• Ingen resultater fundet

IMM YGBY2004ESAESRETR.54 ei

N/A
N/A
Info
Hent
Protected

Academic year: 2022

Del "IMM YGBY2004ESAESRETR.54 ei"

Copied!
106
0
0

Indlæser.... (se fuldtekst nu)

Hele teksten

(1)

Using

Spae Mapping

Pernille Brok

LYNGBY 2004

EKSAMENSPROJEKT

NR. 54

IMM

(2)
(3)

Prefae

ThisMasterThesisissubmitted atIMM,DTU,withthesupervisionofKaj

Madsen, Professor, dr.tehn., andHans BruunNielsen,Ass.Professor.

Iwould like to thank Kaj Madsenand HansBruun Nielsen for their enthu-

siasm,and foralwayshaving timefor aquestion or a disussion.

AlsoIwouldliketothankPh.D.StudentFrankPedersenforbeinginvolved

intheprojet andsupplying manygood ideas.

Lyngby, August2,2004

Pernille Brok

(4)
(5)

Abstrat

Thesubjetofthis masterthesis isnon-linear optimization usingtheSpae

Mappingmethodwithan interpolating surrogatemodel.

The Spae Mapping method is useful in optimization problems, where the

ne model we wish to optimize is very omputationally expensive. The

interpolating surrogate is based on a heap oarse model and serves as a

replaement for the expensive model in order to minimize the number of

funtion evaluations.

An important part of the Spae Mapping algorithm is the Parameter Ex-

tration, whih involvesminimization of the residual between thesurrogate

andthenemodel,whihweaimtoalign. TheParameterExtration prob-

lem does not always have a unique solution, and dierent formulations are

presentedinorderto ensure this uniqueness.

Thethesisprovidesapresentationofthemathematialtheoryfollowedbythe

SpaeMappingalgorithm. Wethenmakeanumberoftheoretialand pra-

tialinvestigationsonerningdierent formulations oftheresidual dening

theParameter Extration problem.

The step length in forward dierene approximations is analyzed, and the

optimalsteplengthsuitedfortheonsideredproblemsisfoundtobeapprox-

imately

10 5

. Wemakeananalysisofthe solutionsto underdeterminedand overdetermined problems, hereby an analysis of the Marquardt equations

and of leastsquares problemswith and withoutweighting fators. We look

at theeetof addinga regularization termto theresidual vetor andnd,

thatthisresidualformulationorrespondstoaspeialaseoftheMarquardt

equations withthe damping parameter

1 + µ

.

ThepresentedSpaeMapping algorithmis testedinthevariousversions on

threetestproblems,andtheresultsareompared. Theonvergene isfaster

than withlassial optimization algorithms. Itis not possible to make gen-

eralonlusionsontheperformaneofthedierentalgorithmversionsbased

onthe inluded testproblems.

Key words: Spae Mapping, non-linear optimization, interpolating sur-

(6)

overdetermined problems.

(7)

Resumé

Detteeksamensprojektomhandlerikke-lineæroptimeringmedbrugafSpae

Mapping-metoden medinterpolerendesurrogater.

Spae Mapping-metoden eranvendelig ioptimeringsproblemer ved optime-

ring af en n model, som er meget dyr beregningsmæssigt. Det interpo-

lerende surrogat er baseret på en billig grov model og erstatter den ne

modelioptimeringsproessen,hvorved vimindskerantalletaftidskrævende

funktionsevalueringer.

Et vigtigt delproblem i forbindelse med Spae Mapping-algoritmen er Pa-

rameter-Ekstraktion, som involverer minimering af residuet mellem surro-

gatet ogden ne model, somvi ønskerat mathe. Parameter-Ekstraktions-

problemet har ikke altid en entydig løsning, og vi præsenterer forskellige

formuleringer meddet formålat sikre en entydig løsning.

Projektet præsenterer den matematiske teori efterfulgt af Spae Mapping-

algoritmen. Herefter laves en række teoretiske og praktiske undersøgelser

vedrørendedeforskelligeformuleringerafresiduet,somdenererParameter-

Ekstraktions-problemet.

Skridtlængden i dierenstilnærmelser analyseres, og den optimale skridt-

længde, som er velegnet til de her betragtede problemer, bestemmes til

omkring

10 5

. Vi analyserer løsninger til underbestemte og overbestemte problemer,herunderMarquardts ligningerog mindste-kvadratersproblemer

medog uden vægtfaktorer. Vibetragter eekten afat medtage etregulari-

seringsled i residuet, og nder at en sådan residue-formulering svarer til et

speialtilfælde afMarquardts ligninger meddæmpningsparameteren

1 + µ

.

Deforskelligeversioner afden beskrevneSpaeMapping-algoritme afprøves

på tre testproblemer, og resultaterne sammenlignes. Konvergensen er hur-

tigere end for klassiske optimeringsmetoder benyttet direkte på den ne

model. Det er ikke muligt, at foretage generelle konklusioner om algorit-

mens præstationer påbasisaf deherinkluderede testproblemer.

Nøgleord : Spae Mapping, ikke-lineær optimering, interpolerende surro-

gater, mindste-kvadraters problemer, vægtfaktorer, underbestemte og over-

(8)
(9)

Contents

1 Introdution 1

1.1 Introdution to theSpaeMappingMethod . . . 1

1.1.1 Dierent SpaeMapping Tehniques . . . 2

1.2 ProblemFormulation . . . 2

1.3 MathematialIntrodution . . . 3

1.3.1 Overview ofThe SpaeMappingAlgorithm . . . 7

1.3.2 NewFormulationof the ResidualVetor . . . 7

1.4 Assumptions . . . 8

1.5 PreviousWorkand Implementation . . . 9

2 Implementation of The Spae Mapping Algorithm 11 2.1 TheSpaeMappingAlgorithm . . . 11

2.1.1 TheMainAlgorithm . . . 12

2.1.2 TheAlgorithmfor Surrogate Optimization. . . 16

2.1.3 TheAlgorithmfor Parameter Extration . . . 18

3 Theoretial and Pratial Investigations 21 3.1 FiniteDierene Approximation . . . 21

3.1.1 OptimalStepLength . . . 22

3.1.2 Resultsfromthe TLT2Problem . . . 26

3.2 TheMarquardtAlgorithm . . . 29

3.2.1 SingularValueDeomposition . . . 29

3.3 Regularization. . . 34

3.4 Variable NumberofMapping Parameters . . . 36

3.5 ThePenalty Fator . . . 39

(10)

3.7 The Normalization Fators . . . 43

4 Test Problems 45 4.1 Introdution . . . 45

4.1.1 TheTest Senarios . . . 46

4.1.2 VisualizationofThe Results. . . 48

4.2 The RosenbrokProblem . . . 50

4.2.1 Introdution. . . 50

4.2.2 LinearTransformation . . . 51

4.2.3 TheAugmented RosenbrokFuntion . . . 58

4.3 The TLT2 Problem . . . 63

4.3.1 Introdution. . . 63

4.3.2 TheResultsof theTest Runs . . . 64

4.4 The TLT7 Problem . . . 75

4.4.1 Introdution. . . 75

4.4.2 TheResultsof theTest Runs . . . 76

5 Future Work 81 5.1 Improvements oftheSMIS Implementation . . . 81

5.2 Suggestions for Further Investigations . . . 82

6 Conlusion 85 A Short User's Guide for The SMISFramework 89 A.1 The ProblemSetup-le. . . 89

A.2 Calling the SpaeMappingAlgorithm . . . 90

A.3 Plotting and ViewingData . . . 91

Symbols and Notation 93

(11)

Chapter 1

Introdution

1.1 Introdution to the Spae Mapping Method

TheSpaeMappingmethodisanoptimization methodusedforengineering

design problems. The tehnique is useful, when the model that we wishto

optimizeisomputationally expensive. Inthisasetheuseofalassialop-

timizationmethoddiretlyonthe nemodelwouldresultinalargenumber

offuntionevaluations,andisonsideredimpossibleinpratie. Thegoalis

to lowerthe number oftime-onsuming nemodelevaluations.

The Spae Mapping method relies on the existene of two funtions mod-

elling the same system: the ne model, whih is very time-onsuming to

evaluate, and a oarse model, whih is heap to evaluate. We wish to on-

strut a surrogate model based on the oarse model, and let the surrogate

serve as a replaement for the ne modelin the optimization proess. The

ne model is suessively evaluated in order to onstrut an interpolating

surrogate model, whihis thenused for optimization. Thesurrogate model

isat leastasaurate asthe oarse model. By aligningthesurrogatemodel

with thene model in more than one point we seek global aswell as loal

agreement of thetwomodels.

Theinterpolatingsurrogateisonstrutedasaomposedmappingonsisting

ofboth an inputand an outputmapping. Thismapping is theSpaeMap-

ping onneting the oarse model responses with the ne model responses.

Thedesign parameters aretransformed bytheinputmapping, andtheout-

put mapping orrets the surrogate to ensure exat agreement of the re-

sponses. Wealignbothfuntionvaluesandgradientsofthesurrogatemodel

with the ne model and hereby wish, that the surrogate provides a good

(12)

TheSpaeMapping-basedoptimizationalgorithmonsistoftwosub-problems:

The optimization ofthesurrogate model.

Theupdateofthesurrogate,theso-alledParameterExtration,whih

determines themapping parameters inorder to ensure the agreement

of thesurrogate andthene model.

1.1.1 Dierent Spae Mapping Tehniques

TheoriginalSpaeMappingformulation isdesribed in[4 ℄and [5℄andonly

involves aninput mapping

P : R n → R n

,where:

P(x) = arg min

z ∈R n k c(z) − f(x) k 2 2

(1.1.1)

We referto (1.1.1) astheoriginalSpaeMapping denition.

TheSpaeMappingmethods withinputmapping anbeapproahed indif-

ferent waysin orderto ensure theuniqueness oftheSpae Mapping. A full

overview andfurther disussionsof thevariousversionsareprovided byJa-

ob Søndergaard in[7℄. When onlyinput mappings areused, we annot be

surethattheSpaeMappingtehniqueprovidesthenemodeloptimizerasa

solution, unlessertaintheoretialonditions aremet. Theseonditions are

stated in[7℄,hapter4.1. Theexat math between thene modeland the

oarse modelresponseis thereforenot likely intheoriginalSpaeMapping,

eventhoughthemappedoarsemodelanprovide agoodapproximationto

the nemodelover alarge region ofthe parameter spae.

When introduing an additional mapping, an output mapping, to dene

the surrogatemodel, we an ensurethe mathing, and herebyoveromethe

residualmisalignment. Onthatground theSpaeMappingtehniqueswith

both inputandoutputmappingsareto bepreferred. Withthesetehniques

the uniqueness of the Parameter Extration is still not ensured, whih is a

problemthatan be solved inmanyways.

ThisreportwillonlyworkwiththeSpaeMappingmethodwithboth input

andoutputmappings, providingan interpolating surrogatethatgivesexat

alignment withthene modelintheexpansion point.

1.2 Problem Formulation

The main subjet of this thesis is the Spae Mapping method based on

an interpolating surrogate. We wishto investigate dierent theoretial and

(13)

theParameter Extrationproblems. Onthis basiswepresenta SpaeMap-

ping algorithm and test the implementation of the algorithm on dierent

test problems.

Inthereportweanalyze the followingsubjets:

Theapproximationerrorfromusingforwarddiereneapproximations asestimatesfor thederivatives, andhereby theoptimal steplength.

Least squaresproblems.

- TheMarquardt equations.

- Thesolution to theregularized problem.

- Thesolutionstounderdeterminedandoverdeterminedleastsquares

problemswith andwithout weights.

Dierent formulations ofthe residual inorder to ensure uniquenessof theParameter Extration.

- Redution ofthenumber ofinputmapping parameters.

- The eet of using a regularization term in the Parameter Ex-

trationproblem.

- TheeetofusingweightingfatorsintheParameterExtration

problem.

- The eet of using normalization fators in the Parameter Ex-

trationproblem.

The mathematial theoryof the SpaeMapping method with interpolating

surrogate is introdued, and the Spae Mapping algorithm is presented in

pseudo-ode. We then onsider the theoretial and pratial investigations

of thesubjets above. Thevarious versions of the algorithm aretested nu-

merially on three problems. Finally suggestions for future investigations

areproposedbylisting some unresolved matters.

1.3 Mathematial Introdution

We areaimingat solving an optimization problemoftheform:

x = arg min

x ∈R n { H (f (x)) }

where

H : R m → R

is a suitable objetive funtion, and

x ∈ R n

is the

optimal setofdesign parameters.

We assume, that two models of the same system are available: A ne but

expensivemodel,givenby

f : R n → R m

and aoarsebut heap modelgiven

by

c : R n → R m

. The funtion vetors froma given parameter set are also

denotedresponsevetors.

The surrogate model

s : R n → R m

is dened bya ompositemapping: For

(14)

eahof the

m

responses we dene theinput mapping

P i : R n → R n

,whih

performs a linear transformation of the design parameters, and the output

mapping

O : R m → R m

,whih transforms theoarse modelresponse. The

aimis toalign the surrogate withthe ne modelfor all

m

responses.

Theinputand outputmapping parameters for

i = 1, . . . m

are:

A i ∈ R n × n , b i ∈ R n , α i ∈ R , β i ∈ R .

Thelineartransformation

P i

for the

i

thresponsefuntionisnowdened as:

P i (x) = A i x + b i

(1.3.1)

andthe output mapping

O i

as:

O i (y) = α i (y i − y ¯ i ) + β i

(1.3.2)

where

y ¯

isa onstant vetor. Gathering theinputand outputmappingswe

have:

P =

 P

T

1

.

.

.

P

T

m

 , O =

 O 1

.

.

.

O m

Theinterpolating surrogatemodel isnowdened bythe omposition:

s = O ◦ c ◦ P

(1.3.3)

When inserting the expressions for the input and output mappings we get

the surrogatemodel forthe

i

th response given by:

s i (x) = O i (c i (P i (x)))

= α i (c i (P i (x)) − c i (P i (¯ x))) + β i

= α i (c i (A i x + b i ) − c i (A i x ¯ + b i )) + β i

We wish to align the responses of the surrogate model with thene model

inall

m

sampling points. Inthe

k

th iteration

x (k)

we musttherebyhave:

s (k) (x (k) ) = f (x (k) )

(1.3.4)

where

s (k)

denotes the surrogate usedinthe

k

th iteration. We furthermore wantthesurrogatemodeltoapproximatethenemodelatpreviousiteration

points. An additional riterion for hoosing the mapping parameters is to

aim for agreement of the Jaobians ofthe ne model (denoted

J f

) and the

(15)

surrogate model (denoted

J s

) inthe urrent iterate. This leeds to the two

equations:

s (k) (x (j) ) = f (x (j) )

for

j = 1, . . . , k − 1

(1.3.5a)

J (k) s (x (k) ) = J f (x (k) )

(1.3.5b)

Equations (1.3.4) and (1.3.5) ensure the alignment of the surrogate model

andthenemodelbothbothwrt.thefuntionresponsesandtheJaobians

in the urrent iterate as well as wrt. the funtion responses in all previous

iterates. The goal is to have both loal and global agreement of the mod-

els. The loal agreement isensured by (1.3.4) and (1.3.5b),and theglobal

agreement by(1.3.5a) .

The initial values of the mapping parameters an be hosen as follows:

We wish to start the iterations in the oarse model optimizer

z

, so that

x (1) = z

. Initeration

0

we thereforewant thesurrogatemodeltobeidenti-

alto theoarse model, whih isensured by hoosing theinputand output

mapping parameters as:

A (0) i = I b (0) i = 0 α (0) i = 1

β i (0) = α (0) i c i (P (0) i (x (0) ))

 

 

 

 

 

 

for

i = 1, . . . , m

(1.3.6)

Inthis waythe

i

thresponseof the

0

th surrogatebeomes:

s (0) i (x) = α (0) i c i

P (0) i (x)

− c i

P (0) i (x (0) )

+ α (0) i c i (P (0) i (x (0) ))

= α (0) i c i

P (0) i (x)

= c i (x)

(1.3.7)

Sinethe oarse modelis assumedto be heap to evaluate,theoptimizer is

foundbya standard optimization algorithm.

In the following iterations the mathing (1.3.4) is ensured by hoosing the

outputmapping parameters

α i

and

β i

andtheonstant

¯ x

inan appropriate way. Byputting

x ¯ (k) = x (k)

wehave the

i

thsurrogate inthe

k

th iteration:

s (k) i (x) = α (k) i c i

P (k) i (x)

− c i

P (k) i (x (k) ) + β (k) i

Byinsertingthe iterate

x (k)

inthesurrogatefuntionandthenin(1.3.4)we

ndthevalue of

β i (k)

to be:

(16)

α (k) i c i

P (k) i (x (k) )

− c i

P (k) i (x (k) )

+ β i (k) = f i (x (k) )

⇒ β i (k) = f i (x (k) )

The

i

th responseof the interpolatingsurrogate isnowgiven by:

s (k) i (x) = α (k) i c i

P (k) i (x)

− c i

P (k) i (x (k) )

+ f i (x (k) )

(1.3.8)

whih is valid for all

k > 0

.

Beause of the hoie of

x ¯

the math (1.3.4) only depends on the output

parameter

β i

,andthe

α i

'smust be hosen appropriately basedon(1.3.5) . Ineahiterationthe next setofdesignparameters

x (k+1)

arefoundbymin-

imizingthe surrogate(1.3.8) dened bythemapping parametersof thepre-

viousiteration:

x (k+1) = arg min

x ∈R n

n H

s (k) (x) o

(1.3.9)

It must be laried, that the new iterate

x (k+1)

is only aepted, if it pro-

duesadereaseintheobjetive funtion ompared totheprevious iterate,

ie.if

H(f (x (k+1) )) < H (f(x (k) ))

. Ifthisisnotthease,thealignments(1.3.4)

and (1.3.5b) must be made with respet to the previous (and so far best)

iterate. Theunaeptediterateisonlyusedintheglobalalignment equation

(1.3.5a),andmustnot satisfythegradient math. To handlesuhan uphill

stepregardingthenemodelobjetiveweuseatrust regionmethodforthe

surrogateoptimization.

When theiterate

x (k+1)

is now available, the

(k + 1)

th set of mapping pa-

rametersmustbefound. Theresponsealignment (1.3.4)isalready ensured.

In order to satisfy the additional mathing (1.3.5) we dene the residual

funtionfor the

i

th response:

r (k+1) i (A i , b i , α i ) =

s (k+1) i (x (1) , A i , b i , α i ) − f i (x (1) )

.

.

.

s (k+1) i (x (k) , A i , b i , α i ) − f i (x (k) ) J (k+1) s,i (x (k+1) , A i , b i , α i ) − J f,i (x (k+1) )

(1.3.10)

where

J s,i

and

J f,i

arethegradientsof

f i

and

s i

wrt.

x

,ie. thetransposeof

the

i

th rowsof the Jaobiansof thene resp. thesurrogate modelwrt. the

x

vetor. We nd the next set of mapping parameters by minimizing the

residual:

n

A (k+1) i , b (k+1) i , α (k+1) i o

= arg min

A i ,b i ,α i k r (k+1) i (A i , b i , α i ) k

(1.3.11)

(17)

insome norm for all

m

responses. Thisproess of updating theparameters

isalledParameter Extration.

The iterations ontinue inthis way with optimization of theurrent surro-

gatefollowedbytheParameterExtration,untilthesolutionisfoundwithin

a satisfying auray. Appropriate stopping riteria ould be based on the

relative hange inthe solutionvetor or intheobjetive funtion.

1.3.1 Overview of The Spae Mapping Algorithm

Based on the previous setion we an now summarize the Spae Mapping

method with the interpolating surrogate. The algorithm for solving the

optimization problemisoutlined asfollows:

1. Given oarse modeland ne model.

2. Set

k = 0

,hooseinitial guess for the oarse optimizer

x (0)

. Initialize

input and output mapping parameters

A (0) i = I

,

b (0) i = 0

,

α (0) i = 1

and

β i (0) = α (0) i c i (x (0) )

for

i = 1, . . . , m

.

3. Optimizethesurrogatemodel(1.3.8)tondthenextiterate

x (k+1)

by

solving (1.3.9) .

4. Compute

f (x (k+1) )

and

J f (x (k+1) )

. Chek stopping riteria and ter-

minateifsatised.

5. Updatemappingparameters

A (k+1) i

,

b (k+1) i

and

α (k+1) i

for

i = 1, . . . m

by (1.3.11)withtheresidual given by(1.3.10) .

6. Set

k = k + 1

and go to step3.

1.3.2 New Formulation of the Residual Vetor

Inthepratial implementation oftheSpae Mappingalgorithm weusedif-

ferent versions of theresidual vetor for the Parameter Extration. This is

doneinordertoensurethattheproblemhasauniquesolution,andthatthis

solutionshouldsatisfytheloalandglobalagreementbetween thesurrogate

andthe nemodel, thatweaim for.

Onthatgroundweherebydene theresidual:

r (k+1) i (A i , b i , α i ) =

w 1 · a 1 ·

s (k+1) i (x (1) , A i , b i , α i ) − f i (x (1) )

.

.

.

w k · a k ·

s (k+1) i (x (k) , A i , b i , α i ) − f i (x (k) ) σ · d ·

J (k+1) s,i (x (k+1) , A i , b i , α i ) − J f,i (x (k+1) )

(1.3.12)

It isnoted, thatthedimension of

r i

is

(k + n)

,when we have found

(k + 1)

x

-iterates. The fators

a 1 , . . . , a k

and

d

are normalization fators used for

(18)

avoiding salingproblems,inasetheresponsesarenot ofthesame orderof

magnitude.

The

w

-fatorsareweighting fatorsusedintherst

k

elements oftheresid-

ual.

Thefator

σ

isapenaltyfatoronlymultipliedonthelast

n

elementsofthe

residualvetor. Theweightingfatorsandthepenaltyfatorhavethesame

eet, but we distinguish between them, beause the fators have dierent

purposes.

Theaim of the weighting fatorsisto give an individual priority to eahof

the iteration points intheresidual. Inthis waywean distinguishbetween

points far from the urrent iterate and points loser to the urrent iterate

andmake theglobal agreement moreor lessaurate inapartiular point.

The penalty fator is used to give the alignment of thegradients a ertain

priority ompared to the funtion value alignments in the previous points.

Ifweinrease

σ

,weanensure,thatthegradientsintheurrentpointmath.

(1.3.12)isequivalent to(1.3.10) ,ifwe put allfators

a 1 , . . . , a k

,

w 1 , . . . , w k

,

d

and

σ

equalto

1

. Thetheoryofsetion1.3andthesummarizedalgorithm

in 1.3.1 are hereby still valid, when we use the residual (1.3.12) instead of

(1.3.10). The new residual is equivalent to the residual (1.3.10) multiplied

bya diagonal matrix.

Throughoutthe restof thereport theresidual we useisgiven bythedeni-

tion(1.3.12) . Ifnothingelse ismentioned thefators

a 1 , . . . , a k

,

w 1 , . . . , w k

,

d

and

σ

have the value

1

. The rst

k

elements of the residual are referred

to asthe funtion value residual,whereas thelast

n

elements arealledthe

gradient residual.

1.4 Assumptions

Inoptimization problems therean oftenbe severaloptimizers, both global

andloal. TheSpaeMappingmethodisnotaglobal optimizationmethod,

and dependingon the problem, we annot be sure, that thefound solution

isthe global optimizer, or even thatthis optimizerisunique.

Anumberofonditionsmustbesatisedinordertondaminimizerbythe

SpaeMappingmethod. Theseonditionsaredisussedindetailsin[7℄,and

arenot thesubjetof this report.

We assumethefollowing:

The sets

{ x } = arg min { H(f(x)) }

and

{ z } = arg min { H(c(x)) }

are

(19)

The oarse model optimizer

z

and the ne model optimizer

x

are

unique.

Allvariables arereal.

The oarse model funtion and the ne modelfuntion areboth on-

tinous andat leastone timedierentiable.

Theevaluationtime for theoarse model isnegligible.

1.5 Previous Work and Implementation

The Matlab programs made in onnetion with this thesis are working

in the existing SMIS (Spae Mapping Interpolating Surrogate) framework

implemented by Frank Pedersen. The framework is programmed in Mat-

lab,but also involves someFortransubroutines olleted intheF-pakage.

ThisinludedF-pakageontainsdierentalgorithmsforthesolutionofon-

strained and unonstrained non-linear optimization problems. A detailed

desriptionof theFortran subroutines isfound in[13℄.

The SMIS framework by Frank Pedersen inludes a number of algorithms

for solving optimization problems with the Spae Mapping Method. The

dierent versions of thealgorithms are plaed in their owndiretory orre-

spondingtothe partiularformulationofthealgorithm. Theproblemsused

to test the algorithms arealso plaed ineah of their own diretories. Fur-

thermore the framework ontains a number of diretories withbasi tools,

suh as forward dierene approximations, plot funtions et. A new tool-

box has been added, this is the immoptibox programmed by Hans Bruun

Nielsen [12℄. The framework an be augmented by addinga new algorithm

or a new test problem plaed in the proper new Matlab diretory in the

properMatlab searhpath.

All Matlab ode programmed during theworking period of this report is

available at IMM's homepage,see [15 ℄. Someof the program les aremod-

ifations or augmented versions of existing ode, and some les are made

fromsrath.

AppendixA providesashort user'sguidefor the SMISframework, yetonly

theimplementationsand test problems usedinthisreport areinluded.

(20)
(21)

Chapter 2

Implementation of The Spae

Mapping Algorithm

Inthishapterthe SpaeMappingalgorithmwill beoutlinedanddisussed.

The method an be parted into three algorithms: The main algorithm and

twosub-algorithms. Themain algorithmissummarized inthepreviousse-

tion, and is referred to as Algorithm 1. Eah iteration in this algorithm

onsistsoftwo optimization proedures:

Therstoptimization probleminvolvesndingthenextiteratebyminimiz-

ing the surrogate model dened by the urrent mapping parameters. This

sub-algorithm isalledAlgorithm 2.

Theseondoptimization proedure -the ParameterExtration - onsistsof

m

optimization problems eah giving a new set of mapping parameters for theorrespondingsurrogate modelresponse. Algorithm3 isusedineah of

the

m

Parameter Extration problems.

The three algorithms will be presented inpseudo-ode in thenext setions

followed byomments ontheinvolved parameters and proedures.

2.1 The Spae Mapping Algorithm

The algorithms follow the theoretial introdution in setion 1. Algorithm

1 builds on the Matlab implementation byFrank Pedersen, but has been

hanged to a ertain extent. The optimization problem in Algorithm 2 is

solved by alling a Fortran subroutine from the F-pakage. The algorithm

is idential to the original and has not been altered. The algorithm is not

disussedindetailsandispresentedheretogiveafulloverviewoftheSpae

(22)

anddierentformulationomparedtotheexistingframeworkbyFrankPed-

ersen.

Before presenting themainSpaeMapping algorithm we dene:

p

: Denes the norm used in the objetive funtion

H : k·k

p. Possible

valuesare

1

,

2

or

,wherethe latter(minimaxoptimization) isused throughout this report.

: Trustregion radius usedinAlgorithm2.

F

: The objetive funtion intheoptimization problem.

Thestopping riteria aredened byanumber ofoptional parameters:

max f1

: Maximal number offuntion evaluations inAlgorithm1.

max f2

: Maximal number offuntion evaluations inAlgorithm2.

max f3

: Maximal number offuntion evaluations inAlgorithm3.

ε F

: Usedinstopping riterion for theobjetive funtion.

ε K

: Usedinstopping riterion for thegradient mathing.

ε hx

: Usedinstopping riterion for thestep lengthfor

x

-iterates.

ε hp

: Usedinstopping riterion for thestep lengthfor

p

-iterates.

Thevaluesfor theparameters used inthe stopping riteria mustbe dened

inthe problemsetup-le,for more detailssee Appendix A.

2.1.1 The Main Algorithm

The surrogate

s

is given by (1.3.8) and the

i

th residual funtion

r i

by the

general formulation(1.3.12) .

Inthe algorithm thesupersript indexes

(k)

for iteration numbersare omit-

tedto simplify the pseudo-ode. The lower index 'new' orrespondsto the

upperindex

(k+1)

, for referenes to theformulation of thetheoryin setion

1.3. It is assumed, that the surrogate model and the residual funtion in

(23)

Algorithm 1: Main Algorithm for Spae Mapping Iterations

k = 0; stop = 0; x ∈ R n ; ∆ = 10 1 · k x k 2

A i = I; b i = 0; α i = 1; β i = α i c i (x)

for i=1,...,m

while not

stop

Find

h new = arg min k h k 2 k s(x + h) k

p byAlgorithm2.

Evaluate

x new = x + h new

,

S new = k s(x new ) k

p and

dS = S new − F

Chekstopping riteria

dS ≥ 0

and

k h new k 2 < ε hx · ( k x k 2 + ε hx )

Evaluate

f new = f(x new )

and

J f,new = J f (x new )

and

F new = k f new k

p

dF = F new − F ; ρ = dF/dS

k = k + 1

Add

x new

and

f new

to sorted internal datastruture

Active = | ∆ − k h new k ∞ | < 10 2

if

dF < 0

x = x new ; f = f new ; J f = J f,new ; F = F new

end

Chekstopping riteria

dF < ε F

and

k ≥ max f1

if

ρ > 0.5 & Active

∆ = ∆ · 2

else if

ρ < 10 4

∆ = ∆/3

end

for i = 1:m

Find

{ A i,new , b i,new , α i,new } = arg min { 1/2 · r

T

i r i }

byAlgorithm3.

Set

{ A i , b i , α i } = { A i,new , b i,new , α i,new }

end

end

Someremarksto Algorithm1 aregivenbelow:

Initialization

Theinitial guessfortheoarsemodeloptimizeris

x

,andtheinitializationof theparameters orrespondsto theformulation insetion 1.3. The elements

oftheorrespondingsurrogatemodelaregivenby(1.3.7)andareidentialto

theoarse model elements. Therst optimization beforeentering the main

loop herebygivesthe oarse modeloptimizer. The valueof theinitial trust

region isreommended to be

∆ = 10 1 · k x k 2

aording to [13 ℄, but an be

(24)

Optimization of the Surrogate

Inthemainlooptheoptimizerofthe urrent surrogatefuntion(denedby

theurrentmapping parameters)isfound. Thestep

h new

andtheobjetive

funtion gain ompared to the previous iterate is alulated. The formula-

tion of the interpolating surrogate makes sure that

s (k) (x (k) ) = f (x (k) )

, so

that

S (k) = F (k)

.

Stopping Criteria

Two stopping riteria areheked at thispoint:

Thehange inthe surrogatefuntion must be negative, ifnot thenew iter-

ateisatually a worse solutionthan the previousone, and we want to exit.

Thisstopping riterion is inludedasasafetyto avoidan inniteloop. The

optimization algorithm for the surrogate model uses a desent method, so

weareensuredadereaseof

dS

. If

dS = 0

weannotimprovethesurrogate,

andwe exittheloop.

The seond stopping riterion is onerning the relative step length and is

denedbytheoptionalparameter

ε hx

. Theformulationmakessurethatthe riterion is also useful, when

k x k 2

is lose to zero. If the solution vetor is

tooloseto thepreviousone,wehavenotahievedmoreinformation toget

anew setofmapping parameters, and we arestukat theurrent iterate.

Cheking these two stopping riteria at this point of the algorithm makes

sure, thatunneessaryevaluations ofthe ne modelareavoided.

Gain Ratio

Weontinue themain loopwithevaluationsof

f

,

J f

andtheobjetivefun-

tion

F

inthenewiterate. Thegainratio

ρ

istheratiobetween thetruegain

and the predited gain. It serves as a measure for how well the surrogate

modelapproximatesthenemodel,andisusedforupdatingthetrustregion

radius

.

Internal Data Struture

The iterate and the orresponding funtion vetor and Jaobian are added

(25)

F

: The objetive funtions of the iterates number

1

to

k

sorted in as-

endingorder.

X

: Matrixwiththeiterates sorted aording to

F

.

dX

: Row vetorwiththe normsof the distanes fromthesorted iterates

in

X

to the bestiterate.

By this sorting the rst element in

F

will be the best objetive funtion

value so far, the rst olumn in

X

will be the best iterate so far, and the

rstelement in

dX

willbe

0

. ThedataisusedintheParameterExtration

problemandalsofordoumentationandplottingafterendedSpaeMapping

iterations.

The Ative Flag

Thisag is ative (

= 1

),if thenewsolution is lose to theboundary ofthe

trust region, in the sense that the length of the step must be in the open

interval

k h new k ∞ ∈ ]0.99 · ∆ , 1.01 · ∆[

. In theory it is impossible to have

k h new k ∞ > ∆

,butinpratieroundingerrorsan have aneet. Anative

agequalto

1

indiates,thatthe trustregiononstraintsareative,andthe

ag isusedlater for updatingthe trust region radius.

Update of the Iterate

If the objetive funtion has dereased, we wish to aept the new iterate,

anduse thisasan initial valueinthenext surrogateoptimization.

Stopping Criteria

Atthis point twoadditional stopping riteria areheked:

We use the hange in the objetive funtion to formulate thestopping ri-

terion:

dF < ε F

. The relative hange an be usedin ase

F

is not lose to

zerointhe optimizer.

As a nal safety towards an innite loop we exit, if the number of main

iterationshasexeededthe maximum value

max f1

.

Update of the Trust Region

We usethe following updating strategy for the trust regionradius

:

Ifthegainratioislargerthan

0.5

,andthenewiterateislosetothebound-

(26)

aryof the trust region, we inrease thetrust region radius bya fator

2

. A

largevalueof

ρ

indiates,thatthesurrogateservesasagoodapproximation to the ne model. Sine the ative ag is

1

,we have taken the largest step

possible inthe latestiteration. We would thenlike to inrease

,and take

longersteps.

If

ρ

is small, the surrogate is a poor approximation to the ne model, and we want to take smaller steps. A derease of the trust region is made, if

the gainratio is smallerthan thevalue

10 4

. Thisondition is quitestrit,

beause of the fat that the surrogate has not yet been updated. By the

update of the mapping parameters to follow, we hope that the surrogate

model isimproved. It is also important, that thetrust region doesnot get

too small, sine the optimization proedure of the surrogate model would

thengetrestrited.

Update of the Mapping Parameters

Themapping parameters areupdatedbyAlgorithm 3.

Eah iteration in the main loop involves one evaluation of the ne model

funtion vetor and one evaluation of the ne model Jaobian. The itera-

tionounter

k

isthenequal to thenumber of

f

- and

J f

-evaluations. Alsoa numberof oarse model evaluations (through the surrogate evaluation) are

performed. Sine these are onsidered heap ompared to the ne model

evaluations,weareonly interested inthenalamount ofnemodelevalua-

tions.

2.1.2 The Algorithm for Surrogate Optimization

Thealgorithm usedto solve the optimization ofthesurrogate isoutlinedin

pseudo-ode in the box below. Sine we are mainly onerned with Algo-

rithm1and 3 inthis report, Algorithm2is only disussedbriey. We note

that the iteration ounter is used independently of the iteration ounter of

(27)

Algorithm 2: Sub-algorithm for the Surrogate Optimization

Given global trust regionradius

and initial parameter vetor

x (0)

Linear inequalityonstraints:

A ˆ = [ I; − I]

b ˆ = [ − x (0) + ∆; x (0) + ∆]

Callto funtion minnonlin.

Callto Fortran subroutine (non-linear optimization inthenorm

p

).

Initialloal trustregion radius

∆/4

stop if

j ≥ max f2

or if

h < ε hx · k x k 2

Initialization

The trust region radius

is given byAlgorithm 1. To ensure that theop-

timizerofthe surrogate funtionisinsidethetrust region,we introdue the

linearinequality onstraints given by:

x +

− x (0) + ∆

≥ 0

and

− x +

x (0) + ∆

≥ 0

whihis equal to the onditions:

x ≥ x (0) − ∆

and

x ≤ x (0) + ∆

See the user's guide inAppendix A for more information onhow to handle

theasewhere theoriginal minimization problemisonstrained.

Funtion Call to minnonlin and Fortran Subroutine

This funtion is a helping funtion that, depending on the problem type,

makesanotherfuntionalltotheproperFortransubroutine,see[13℄. Whih

optimization algorithm isuseddependson thenorm

p

,inwhihwe want to

minimize the surrogate funtion, and of wether the objetive funtion is a

salar funtion or a vetor funtion. Beause of the trust region approah

theoptimization problemisalwaysonstrained.

Someof the Fortran subroutines use anoptimization method withtrust re-

gion, inthis asethe initial loaltrust regionis setto

∆/4

. Thisloaltrust

regionhasnothingto dowiththe global trustregion

,whih ensures,that

(28)

Stopping Criteria

The Fortran subroutines require two optionalparameters used in thestop-

pingriteria of the algorithm: The maximum number of iterations allowed

(

max f 3

, and the parameter

ε hx

whih is used in regard to the step length.

Thealgorithm stops,whenitsuggestsa steplength

h

,when

h < ε hx · k x k 2

.

2.1.3 The Algorithm for Parameter Extration

The third algorithm, whih performs theParameter Extration for eah of

the

m

responsefuntions, isoutlinedbelow.

Algorithm 3: Sub-algorithmfor Parameter Extration

Given initial parametervetor

p k = [A(:); b; α]

The objetive funtion is

r

and the last

n

rows of

r

are denoted

g

.

The options inmarquardtare given byopts.

j = 0; stop = 0; σ = 1 K = k g k ∞ ; K r = k r k ∞

while not stop

j = j + 1

Find

p new = arg min p { 1/2 · r(p)

T

r(p) }

bymarquardt withopts

r new = r(p new ); K new = k g new k ∞ ; K r,new = k r new k ∞

h = p new − p; Accept = K new < K

if

Accept

p = p new ; K = K new ; K r = K r,new

end

if

K new < ε K

stop = 1;

break

else if

h < ε hp · ( k p k 2 + ε hp ) stop = 2;

break

else if

j ≥ max f 3

stop = 3;

break

else if

σ ≥ 10 3 stop = 4;

break

end

if

σ < 10 3 σ = σ · 10

end

end

(29)

This algorithm is onsidered independently of Algorithm 1 and 2, and any

referenes toiterations only onernthepresent Algorithm3.

Initialization

We have given initial sets of the mapping parameters

A

,

b

and

α

orre-

sponding to an arbitrary response. The mapping parameters are arranged

inthevetor

p k

,where

k

denotes the mapping parameters deningthe

k

th

surrogate model. The residual funtion for the response is given by equa-

tion (1.3.12) . The options used in the marquardt-funtion are set in the

5

-element vetoropts where:

opts(1) : Denes theinitial valueof the Marquardtparameter:

:

µ 0 =

opts(1)

max { (J

T

0 J 0 ) (i,i) }

.

opts(2) : Parameter usedinstopping riteria for thegradient:

:

k F (p) k ∞ ≤

opts(2).

opts(3) : Parameter usedinstopping riteria for thesteplength:

:

k dx k 2 ≤

opts(3)

(

opts(3)

+ k p k 2 )

.

opts(4) : Maximal numberof iterations

opts(5) : Lowerbound on

µ

:

µ =

opts(5)

max { (J

T

J) (i,i) }

.

Thepenalty fator

σ

used inthe gradient residual isinitialized to

1

.

K

is a

measure of the violation of thegradient math, and

K r

of themathing of

thefullresidual.

Optimization of the Residual

The urrent residual is optimized by the Matlab-funtion marquardt im-

plemented by Hans Bruun Nielsen to nd the next parameter vetor. This

new solution isa resultof a number ofMarquardt steps, and theiterations

endedbeauseoneofthestopppingriteriasmentionedabovewasativated.

The Marquardt algorithm is disussed further in setion 3.2. The residual

funtion vetor is evaluated inthe new iterate, aswell asthenew values of

K

and

K r

and thesteplength.

The Aept Flag and Update of the Iterate

Sineweonsider the gradient math to be ofgreat importane,we usethe

fator

K

to deide,wetherthe newsetof parametersisbetter thanthepre-

vious. The parameter vetor is aepted (

Accept = 1

), only ifthe gradient

(30)

math residual hasbeen dereasedompared to theprevious iteration.

Stopping Criteria

We hek four stopping riteria and exittheloop, ifeitherof them aresat-

ised. The gradient math is onsidered satised, if

K

is smaller than the

value

ε K

. Seondlyifthestep between two onseutive iterates isrelatively

small, the step length riterion is ativated. The third riterion stops the

loop,ifthe numberofiteration steps hasexeededthelimit

max f 3

. Finally

we will only ontinue the iterations, while

σ

is below or equal to

10 3

. This

riterionisequivalenttousing

max f3 = 4

,ifwehoosetheupdatingstrategy

below.

Update of the Penalty Fator

Forthepenaltyfator

σ

weuseasimpleupdatingstrategy:

σ

isinreasedby

afator

10

for eahmain iteration. Inthis wayweforethegradient math

to beome ofgreaterimportane than the otherelements oftheresidual.

(31)

Chapter 3

Theoretial and Pratial

Investigations

3.1 Finite Dierene Approximation

To run the SMIS algorithm the user must supply two Matlab-les with

implementationsoftheoarseandnemodelandtheirJaobians. Forsome

problems (inluding theTLT2 and TLT7 problems), no exat gradients are

available, and theJaobiansareinsteadalulated byeg.dierene approx-

imations. In the test problems investigated in this report, the Jaobian is

alulated by forward dierene approximations by the Matlab-funtion

diffjaobian, see [15℄, implemented by Jaob Søndergaard. In the im-

plementation of diffjaobian the step length is saled aording to the

independent variable

x

,sothat

h = η(1 + | x | )

. Thisformulationisusefulin theasewhere

| x |

isvery small,andwe get

h ≃ η

. Thevalueof

η

originally

hadthe xedvalue

η = √ ε M

,where

ε M

isthe mahineauray, but

η

an

be hanged bytheuser diretlyinthe m-le.

BytheinvestigationoftheTLT2problem,some interesting featuresregard-

ingthemodelfuntionswerediovered. Thene,oarse andsurrogatefun-

tions are smooth, but the gradients (partial derivatives) wrt. both

x

and

p

alulatedfromdiffjaobianshowadierentpiture,whenthesteplength

issmall. Thismotivatedaninvestigationofthesteplengthindiffjaobian.

In the following setions the theory is simplied by looking at salar fun-

(32)

3.1.1 Optimal Step Length

TheJaobiansofboththeneandoarsemodelarealulatedbytheMat-

lab-funtiondiffjaobian. Inthefollowingtheinueneofthesteplength

usedinthe dierene approximation willbe analyzedbased on a salarex-

ample.

Given asalarfuntion

f : R → R

weompute aforward diereneapprox-

imationto thegradient of

f

inthe point

x

by:

D F (x, h) = f (x + h) − f (x)

h

(3.1.1)

TheTaylorexpansion of

f

intheexpansion point

x

is given by:

f(x + h) = f(x) + hf (x) + h 2

2 f ′′ (x) + O(h 3 )

(3.1.2)

Inserting(3.1.2) intheforward dierene approximation (3.1.1) ,we get:

D F (x, h) = f (x) + h

2 f ′′ (x) + O(h 2 )

Thetrunation error

E T

isnow:

E T = D F (x, h) − f (x)

= f (x) + h

2 f ′′ (x) + O(h 2 ) − f (x)

= h

2 f ′′ (x) + O(h 2 )

(3.1.3)

and we seethat thetrunation error is

O(h)

for

h → 0

. Ifwe alsotake the

roundingerrorsintoaount,wegettheoatingpointnumbers

f ¯ (x + h)

and

f(x) ¯

insteadof

f(x + h)

and

f (x)

:

f ¯ (x + h) = f (x + h)(1 + δ 1 ), | δ 1 | ≤ Kε M

f ¯ (x) = f (x)(1 + δ 2 ), | δ 2 | ≤ Kε M

where theonstant

K ≥ 1

and

ε M

isthe mahine auray.

Insertingthe above intheforward dierene approximation(3.1.1) we get:

D ¯ F (x, h) = f(x ¯ + h) − f ¯ (x) h

= f (x + h) − f (x)

h + δ 1 f (x + h) − δ 2 f (x) h

= D F (x, h) + E R

= f (x) + E T + E R

(3.1.4)

(33)

where the rounding eror is denoted

E R

. The worst possible rounding error

iswhen

δ 1 f (x + h)

and

δ 2 f (x)

have oppositesigns, giving:

| E R | ≤ Kε M ( | f (x + h) | + | f (x) | ) h

≃ 2K | f (x) | ε M

h

(3.1.5)

Theabsolutetotalerrorisnowgiven bytheabsolutedierenebetween

D ¯ F

andthe realgradient:

| E | = | E T + E R | = | D ¯ F (x, h) − f (x) |

≃ Ah + O(h 2 ) + B ε M

h

(3.1.6)

Theonstants

A

and

B

dependonthefuntionvaluesandseondderivatives intheneighbourhood of

x

,

A ≃ 1 2 | f ′′ (x) |

and

B ≃ 2K | f (x) |

.

Usingtheabovewenowonsidertheasewhenapproximatingthegradients

wrt.theparameters in the

x

-vetor. The gradients appear intheJaobians

of the ne, oarse and surrogate models inthe Parameter Extration prob-

lem. We onsider an arbitrary response funtion with no index on

f

and

s

. Eahof the rows of the gradient residual (thelast

n

rows ofthe residual

from(1.3.12) ) hastheform:

g i (x, p) = s x i (x, p) − f x i (x)

(3.1.7)

x

is a olumn vetor holding the design parameters, and the vetor

p

is

holding the parameters

A

,

b

and

α

. To simplify the alulations we on-

sider only the

i

th row of the gradient residual asa funtion of thevariable

vetors

x

and

p

(keeping all otherparameters than

x i

xed). Withoutloss

ofgeneralitywealso disregard thefators

σ

and

d

.

Theexatfuntion

g i (x, p)

isreplaedbytheapproximatedfuntion

G i (x, p)

returnedbytheMatlab-funtion,wherethediereneapproximationwrt.

x i

andthe roundingerrorsgivesthe approximation to (3.1.7) :

G i (x, p) ≃ s(x + h x e i , p) − s(x, p) + Bε M

h x − f x i (x)

=

s x i (x, p) − f x i (x) + h x

2 s ′′ x i x i (x, p) + O(h 2 x ) + B ε M

h x

= g i (x, p) + Ah x + O(h 2 x ) + B ε M

h x

(3.1.8)

where

e i

isa unitvetor inthe

i

th diretion and

h x

isthestep length. The

onstant

A

depends on the seond derivative of

s

, and

B

depends on the

funtion values of

s

intheinterval

x ∈ [x , x + h]

.

(34)

Byomparing (3.1.8) withtheexat funtion (3.1.7) ,we getthetotal error

foreah of thegradient residual rows:

E G (h x ) = E T + E R

≃ Ah x + O(h 2 x ) + B ε M

h x

(3.1.9)

wherethe dierentiation iswrt.

x i

for rownumber

i

,and thelowerindexof

x

hasbeen omittedfor simpliity.

When

h x

is large the total error is dominated by the trunation error (the

rst two terms), whereas the rounding error (the last term) dominates for

small

h x

. To determine the optimal step length

h x,opt

inorder to minimize

the total errorwe dierentiate (3.1.9)negligating the

O(h 2 x )

term andget:

E G (h x ) = A − B ε M

h 2 x

(3.1.10)

Equalizing (3.1.10) with

0

we have the optimal step length minimizing the

errorfuntion:

E G (h x ) = 0 ⇒ h x,opt = r

ε M

B

A

(3.1.11)

InMatlab theunit round-o is

ε M ≃ 10 16

, sothe step length should be

around

10 8 q B

A

togivethesmallesterrors. Inpratiewedon'tdistinguish between the

x

-variables andhooseone suitablestep length.

Withtypial values of thederivatives of thesurrogatemodel of:

s x (x, p) ∼ 10 3

,

s ′′ xx (x, p) ∼ 10 4

we get the approximate value of the optimal step length

h x,opt ∼ 10 7

. Here we have used the values for the onstants

A = 1 2 10 4

and

B = 2 · 10 3

. The result agrees with gure 3.1.1, where

theerrorfuntion(3.1.9)forthesevaluesof

A

and

B

isplottedasafuntion

ofthe step length

h x

.

We now analyse the ase where the dierene approximation is made with

the

p

-parameters. We again onsider the

i

th row of the gradient residual,

andlookat the gradient withrespet to the

j

th parameterinthe vetor

p

.

Allother variables arekept xed.

We nowhave the

(i, j)

-element oftheJaobian:

Referencer

RELATEREDE DOKUMENTER

Tilhører Maleren Niels Skovgaard.. Neapolitansk Fiskerdreng siddende paa

Uagtet det endnu ikke er tre Dage siden, at jeg tilskrev Dem et Brev, som skal sendes med en engelsk Orlogsmand, som daglig ventes hertil, vil jeg dog tilskrive Dem disse faae

Petersen, Elly Bruunshuus: ‘Carl Nielsen og Samfundet til Udgivelse af Dansk Musik 1899-1931’ [Carl Nielsen and The Society for Publishing Danish Music], Fund og forskning i

risk perspektiv, hvor man tilskriver de parlamentariske institutioner som Folketinget, vælgerne, de politiske partier og regeringen en betydelig indf lydelse i forhold til

Hvis De og Deres familie skal flytte til et andet sted i landet, skal De underrette Deres barns skole, så at denne kan udstede et flyttebevis. I dette gives der

kens tidspunkt eller kort tid derefter, kunne der være grund til at overveje, om det ikke i disse tilfælde ville være hensigtsmæssigt, om man tilkendte

Personalet måtte gerne hjælpe de unge med at udfylde skemaets forside, hvor de skulle svare på, hvornår de blev ind- og udskrevet, hvor mange gange de havde været indlagt

Jensen, Niels Martin: ‘Carl Nielsens Musik i ny skikkelse – en samlet udgave af hans værker’ [Carl Nielsen’s music in a new guise: a complete edition of his works], Espansiva