• Ingen resultater fundet

The Results of the T est Runs

4.4 The TL T7 Problem

4.4.2 The Results of the T est Runs

Eet of the Regularization

Thealgorithm does not onvergeto theoptimizerinthe asewhere we use

theregularized residual inthe Parameter Extration. When solvingthe

un-regularizedParameterExtrationproblemwegettheperformaneresultsof

the algorithm depited in gure 4.4.2. The result is with normalization of

the residualelements anda full sizeparameter vetor.

The optimizer is found in 10 iterations within the auray

10 16

of the

objetive funtion. Thenumberofunknown mappingparameters ineahof

the Parameter Extration problems is

n p = 57

. In the ase of no

regular-ization this means, that until iteration

51

we will have lessequations than

unknowns. Thisis obviouslynot an obstale, sine we ndthe optimizerin

12

iterations.

It is not known, why the test senario with theregularized Parameter

Ex-0 5 10 15 10 −20

10 −15 10 −10 10 −5 10 0 10 5

Performance

Iteration

||x (k) −x * ||

2 F(x (k) ) − F(x * )

Figure4.4.2: Withoutregularization

Eet of the Normalization Fators

Ingure4.4.3we seethe iterationsequenefor the aseofnonormalization

of the residual vetor, orresponding to

a 1 , . . . , a k = 1

and

d = 1

. Thetest

isomputed withfull parametervetor.

Theonvergene is alittle faster than theresultfrom gure4.4.2.

0 5 10 15

10 −20 10 −15 10 −10 10 −5 10 0 10 5

Performance

Iteration

||x (k) −x * ||

2 F(x (k) ) − F(x * )

Figure4.4.3: Withoutnormalization

Eet of the Weighting Fators

With no redution of the number of unknown mapping parameters in the

Parameter Extration we have

n p = 57

, and hereby the weighting fators

may inuene the results from iteration number

51

. Beausethe optimizer

isalreadyfoundatthispoint,weannotusethistestsenariotoinvestigate

Instead we look at the senario withredution of the parameter vetor. In

thisasewehave

n p = 15

,andsomeoftheweightingfatorswillbedierent

from

1

from iteration

9

and onwards, if we use the strategy from setion

3.6. Figure 4.4.5 on the right shows the iteration sequene with the useof

weightingstrategy. Foromparison theresults withoutweighting areshown

ingure4.4.4 onthe left.

0 5 10 15

10 −20 10 −15 10 −10 10 −5 10 0 10 5

Performance

Iteration

||x (k) −x * ||

2 F(x (k) ) − F(x * )

Figure 4.4.4: Withoutweighting

0 5 10 15

10 −20 10 −15 10 −10 10 −5 10 0 10 5

Performance

Iteration

||x (k) −x * ||

2 F(x (k) ) − F(x * )

Figure4.4.5: Withweighting

The gures are almost idential, and the weighting fators are pratially

withoutinuene inthis problem.

Eet of the Number of MappingParameters

Wenowshowtheresultsfromusingareduedparametervetor,

orrespond-ingtoadiagonal matrixforthe inputmappingmatrix

A

. Figure4.4.6isfor

the regularized ase, andgure 4.4.7for theunregularized ase.

Thealgorithmdoesnot onvergeintherstasewithregularization. Inthe

seondase theoptimizeris foundin

12

iteration steps withan aurayof

10 15

on the ne model objetive funtion. It is not known, why the test

runwith regularizationdoesnot onverge to theoptimizer.

Thereispratiallynodierenebetweentheiterationswiththefull

parame-tervetor(gure4.4.2)andthereduedparametervetor(gure4.4.7). The

algorithm works well when solving the unregularized Parameter Extration

problem,and ithasno eet whetherthe problemsareunderdetermined or

0 10 20 30 40 50 60 70 80 10 −20

10 −15 10 −10 10 −5 10 0 10 5

Performance

Iteration

||x (k) −x * || 2 F(x (k) ) − F(x * )

Figure4.4.6: Withregularization

0 5 10 15

10 −20 10 −15 10 −10 10 −5 10 0 10 5

Performance

Iteration

||x (k) −x * ||

2 F(x (k) ) − F(x * )

Figure 4.4.7: Without

regulariza-tion

Optimal Mapping Parameters

This problem is of larger dimension than the other test problems, and we

havenot investigated the optimal mapping parameters.

Diret optimization

Belowwe seetheperformaneof thediretd-algorithm.

0 20 40 60 80 100 120

10 −20 10 −15 10 −10 10 −5 10 0 10 5

Performance

Iteration

||x (k) −x * ||

2 F(x (k) ) − F(x * )

Figure4.4.8: Performaneof diretoptimization ofthene model

The lassial optimization method onverges in

127

iterations, and we on-ludethatthe SpaeMappingtehnique isveryuseful inthisproblem,sine

itreduesthe numberofnemodelevaluationswithapproximately afator

10

.

Summaryof the Results

When the Parameter Extration problem is regularized we have no onvergene to theoptimizer, both inthe aseof afull and a redued

parameter vetor.

The normalization fatorshave littleeet on theonvergene speed.

The weighting fators have pratially no inuene on the results in

the aseofa redued parametervetor.

The redutionof themapping parameters hasno eet on the

perfor-mane inthis test problem.

It isnotpossibletogetasgoodonvergene resultsastheresultsfrom

[1 ℄ and [2 ℄, probably beause the problem is not idential to the one

solvedinthis report.

Chapter 5

Future Work

5.1 Improvements of the SMIS Implementation

Anumberofhangesoftheimplementation ouldbemadeinorderto make

theSMISframeworkmoreexibleanduser-friendly. Alsotheaurayofthe

omputationsouldbeimprovedforsomeproblems. Theurrentframework

onsistsof many diretories and les linked together ina ertain struture.

The suggested hanges will therefore inuene many of the inluded les,

whihwill eet theduration of thework involved.

Intheurrentimplementation thegradientsofthesurrogatemodelwrt.the

parameter vetor are alulated by forward dierene approximations. In

ordertominimizethetrunationerrors,itwouldbeanadvantageto exploit

theexat gradients, ifthey areavailable.

TheMatlab-lediffjaobianusedtoalulatetheforward dierene

ap-proximation. In the urrent implementation the parameter

η

dening the

relative step length is xed at a ertain value, and an only be altered by

modifyingthe Matlab-le diretly.

Theuser friendliness ouldbeimproved byinluding more optional

param-eters to the problem setup-le. The setup-le should dene the following

optionalparameters:

Initialtrust region radius for Algorithm1.

max f1

Maximal numberof funtionevaluations inAlgorithm1.

max f2

Maximal numberof funtionevaluations inAlgorithm2.

max f3

Maximal numberof funtionevaluations inAlgorithm3.

η x

Steplength indiffjaobianwhenalulatingJaobian wrt.

x

.

η p

Steplength indiffjaobianwhenalulatingJaobian wrt.

p

.

ε F

Usedinthe stopping riterion for thene modelobjetive funtion.

ε K

Usedinthe stopping riterion for thegradient mathing.

ε hx

Usedinthe stopping riterion for thestep lengthfor

x

-iterates.

ε hp

Usedinthe stopping riterion for thestep lengthfor

p

-iterates.

opts Options formarquardt ([1e-8 1e-4 1e-4 200 1e-12℄).

diagA Parameter dening thenumberof mapping parameters

(0: fullmatrix

A

,1: diagonal matrix

A

)

Someof the above options arealready used in theSMIS framework, ie.

,

max f1

,

max f2

,anddiagA,andalsotwo toleraneparameters orresponding to

ε F

,

ε K

,

ε hx

and

ε hp

.

We also list some possible hanges inorder to inrease the auray of the

omputations:

Introduingthestep lengthparameter

η

asaninput parameterto the

funtion diffjaobian.

Making itpossible to exploitexat gradients, ifthey areavailable.