• Ingen resultater fundet

An energy efficient buildingfor the Arctic climate

N/A
N/A
Info
Hent
Protected

Academic year: 2023

Del "An energy efficient buildingfor the Arctic climate"

Copied!
194
0
0

Indlæser.... (se fuldtekst nu)

Hele teksten

(1)

Petra VladykovaAn energy efficient building for the Arctic climate - Is a passive house sensible solution for Greenland?Report R-243 2011Petra VladykovaAn energy efficient building for the Arctic climate - Is a passive house sensible solution for Greenland?Report R-243 2011

DTU Civil Engineering Report R-243 (UK) April 2011

Petra Vladykova

PhD Thesis

Department of Civil Engineering 2011

An energy efficient building for the Arctic climate

Is a passive house sensible solution for Greenland?

Petra VladykovaAn energy efficient building for the Arctic climate - Is a passive house sensible solution for Greenland?Report R-243 2011

During the past few decades, there has been quite some development of energy efficient buildings with low energy heating consumption; one of these buildings is a passive house which has been successfully implemented in locations 40° to 60° Northern latitudes. Nowadays, there is a focus on implementation of a passive house in more demanding climate of the Arctic regions. The analyses presented in this thesis offer a theoretical possibility of building a fundamental passive house in the Arctic and an improvement of the technical solutions in a full sense of definition. Furthermore, a discussion of the new definition is presented based on the optimization of building construction products and adaptation of a passive house in the Arctic.

The adaptation of a passive house in the Arctic is based on the best combination of building design aspects, climate characteristics, the material availability and energy resources combined with ecological impacts.

DTU Civil Engineering Department of Civil Engineering Technical University of Denmark

Brovej, Building 118 2800 Kgs. Lyngby Telephone 45 25 17 00 www.byg.dtu.dk

ISBN: 9788778773234 ISSN: 1601-2917

(2)

i

Preface

This thesis is submitted for the Ph.D. degree to the Department of Civil Engineering at the Technical University of Denmark.

The study described in the thesis has been carried out from August 2007 to April 2011. It should be noted that a leave of absence for a total of 8.5 months has occurred during the process of working on the thesis. The funding for this Ph.D. is from the Technical University of Denmark.

The work has been conducted at BYG - Section for Building Physics and Services, Department of Civil Engineering, Technical University of Denmark. The supervisors were Head of Section Professor Carsten Rode (BYG DTU), Associate Professor Toke Rammer Nielsen (BYG DTU) and M.Sc. Søren Pedersen (Passivhus.dk, Passivhus.fi).

Petra Vladykova

Kongens Lyngby, April 15, 2011.

i

Preface

This thesis is submitted for

the Ph .D. deg ree to the De partm ent of Civil E ngineering at

the Techn ical University

of De nmark.

The study described in the thesis has be

en carr ied out fr om Au gust 200 7 to April 2011.

It should be

noted that a leave of absen ce for a tot al of 8.5 month s has occurred

during the process of

working

on the thesi s. The fund

ing f or this Ph.D. i s from the Te

chnica l Unive rsity of Denm ark.

The wor k has bee n conduc ted at

BYG - Section for B uilding Ph ysic s and Service s, De partment of

Civi l En gin eering, Technic

al University of De

nmark. The s upervisors were

Head of Sect ion

Professor Ca rsten Rode (BYG DTU), Associa

te Professor Toke Ra

mmer Niel sen (BYG DTU) and

M.Sc. Søren Pedersen (Pa

ssivhus.dk, Passivhus.f

i).

Petra Vla dykova

Konge ns Lyngby,

Ap ril 15, 2011.

(3)

ii

ii

(4)

iii

Acknowledgments

Many people have helped me during the years of study and I would like to thank them all for their help and contributions. I would like to give a special thanks and appreciation to the following:

- My supervisor, Carsten Rode, for endless support, valuable inputs and encouragements

which he offered me whenever my spirits were down.

- My other two supervisors Søren Pedersen and Toke Rammer Nielsen, for inspiring

discussions and very valuable inputs.

- Peter Holzer, for his help during external stay at the Danube University Krems, Austria.

- All colleagues at BYG, for their support.

- All colleagues at ARTEK, for taking me along and introducing me to Greenland.

- My colleague Janne Dragsted, for walks and talks.

- DTU for granting me the Ph.D. scholarship.

- A special thanks to my family, Michal and all my friends for their support.

iii

Acknowledgmen ts

Many peo ple have hel ped me during the years of

stu dy and I wo uld like to thank them al

l for their

help and cont ributions.

I wo uld like to gi ve a special th

anks and appreciatio n to t

he following:

- My s upe rvi sor , C ars ten R ode , f or end less su ppo rt, val uabl e in put s a nd enc our age men ts

which he offe red me whe

never my spiri ts were down.

- My other tw o superviso rs

Søren Pedersen and Toke

Ramm er Ni else n, for in spiring

discussions a nd very valu

abl e inputs.

- Peter Holzer, for hi s help during external stay at

the D anube University Krem s, Austr

ia.

- All col league s at BYG, for thei

r suppo rt.

- All colleagues at ART

EK, for taking me along and introduci

ng me to Green land.

- My coll eague Janne Dragsted, for wa

lks and tal ks.

- DTU for granting me

the Ph.D. schol arship.

- A special thanks t

o my family, Michal an d all m y frie nds for the ir support.

(5)

iv

iv

(6)

v

List of appended papers

This thesis is based on analyses which are described partly in the body of the thesis and in the following articles which are the basis of this dissertation. The enclosed publications are papers presented at international conferences and papers accepted in, or submitted to, scientific journals.

Appended papers

Paper I Passive houses for the Arctic Climates

Petra Vladykova, Carsten Rode, Toke Rammer Nielsen, Søren Pedersen

Published in the 1st Norden Passivhus Conference, Trondheim, Norway, 2009

Paper II The potential and need for energy savings in standard family detached and

semi-detached wooden houses in arctic Greenland Søren Peter Bjarløv, Petra Vladykova

Published in the Journal of Building and Environment, 2010

Paper III Low-energy house in Arctic climate - 5 years of experience

Petra Vladykova, Carsten Rode, Jesper Kragh, Martin Kotol Accepted in the Journal of Cold Regions Engineering, 2011

Paper IV Passive houses in the Arctic. Measures and alternatives

Petra Vladykova, Carsten Rode, Toke Rammer Nielsen, Søren Pedersen

Published in the 13th International Conference on Passive House, Frankfurt am

Main, Germany, 2009

Paper V The energy potential from the building design’s differences between Europe and

Arctic

Petra Vladykova, Carsten Rode

Published in the 9th Nordic Symposium on Building Physics, Tampere, Finland, 2011

Paper VI The study of an appropriate and reasonable building solution for Arctic climates

based on a passive house concept Petra Vladykova, Carsten Rode

Submitted to the Journal of Cold Regions Engineering, 2011 v

List of appended papers

This thesis is based on analyses which

are describ ed partly

in th e bod y of the thesis a

nd in

the follo wing articl es wh ich are the basi s of this di ssertat ion.

The encl osed publicat

ions are pap ers

presented at in ternatio nal c onferences and papers accepted in, or submitted t

o, scientific jo urnal

s.

Appen ded p apers

Paper I Passive hous

es for the Arcti

c Climates en Rode, Toke Ra Carst dykova, Petra Vla mmer

Niel

sen, Søren Pedersen onference, Trondhe ssivhus C rden Pa No st he 1 in t Published

im, No rway, 200 9

Paper I I The potential

and need for energy savings in

stand ard famil

y detached and 2010 reenland Environment, arctic G ng and a Vladykova of Buildi houses in he Journal Bjarløv, Petr in t semi-detached wooden Søren Peter Published

Paper I II Low -ene rgy house in Arctic cli mate - 5 ye ars of

experience agh, Martin en Rode, Jesper Kr Carst dykova, Petra Vla

Kotol , 201 ring Enginee gions Cold Re Journal of the Accepted in

1

Paper I V Passive hous es in the Arctic.

Measures and alternativ

es sen, Søren Pedersen Niel mmer en Rode, Toke Ra Carst dykova, Petra Vla

, Frankfurt Conference on Passive House ernational Int th he 13 in t Published

am 2009 any, Main, Germ

Paper V The energy potential

from the buil din g design

’s differ ences between

Europe and Tampere, Finland n Building Physics, en Rode rdic Symposium o No th Carst the 9 in dykova, Arctic Petra Vla Published , 20

11

Paper VI The st

udy of an app ropriate and reasonab

le bui lding solu

tion for Arctic climates , 201 ring Enginee gions pt Cold Re conce en Rode Carst Journal of passive house o the dykova, based on a Petra Vla Submitted t 1

(7)

vi

vi

(8)

vii

Abstract

The Arctic is climatically very different from a temperate climate. In the Arctic regions, the ambient temperature reaches extreme values and it has a direct large impact on the heat loss through the building envelope and it creates problems with the foundation due to the permafrost. The solar pattern is completely different due to the limited availability in winter, yet, in summer, the sun is above horizon for 24 hours. Furthermore, the sunrays reach the vertical opaque elements at shallow angles. The great winds and storms have large effects on the infiltration of buildings and they heavily influence the infiltration heat loss through the building envelope. The wind patterns have large influences on the local microclimate around the building and create the snowdrift and problems with thawing, icing and possible condensation in the building envelope. The humidity in the interior is driven out through the building envelope in the winter due to the pressure difference, strong winds and low water ratio in the outdoor air. The Arctic is also defined by different conditions such as building techniques and availability of the materials and energy supply.

The passive house uses the basic idea of a super energy efficient house in which the normal hydronic heating system can be omitted. The savings in investment for a traditional hydronic heating system are spent on energy conserving components such as increased insulation in a super airtight building shell, super efficient windows to produce the net positive solar gain, and a ventilation system with very efficient heat recovery. To design a passive house in the way it is defined by Wolfgang Feist, the founder of the Passivhaus Institute, its annual heat demand should

not exceed 15 kWh/(m2∙a) and its total primary energy demand should not exceed 120 kWh/(m2∙a)

in which the building envelope allows limited air change of 0.6 h-1 at 50 Pa pressurization. The living

area of the building is well defined according to the standard conditions as a net area and the heat

of 10 W/m2 can just be supplied by post-heating of fresh air after the heat recovery unit which

ensures a satisfactory indoor air quality. A passive house also takes advantage of free gains such as solar heat, the heat from its occupants and their activities, and the domestic appliances, and other sources.

The hypothesis in this dissertation is testing the possibility of a new usage of an extreme energy efficient building in the Arctic. The purpose of this Ph.D. study is to determine the optimal use of an energy efficient house in the Arctic derived from the fundamental definition of a passive house, investigations of building parameters including the building envelope and systems, and investigations of boundary situations in the Arctic regions.

The object of the study is to analyse current passive house standards used in the temperate climate through the energy performance of a passive house in the cold climates. In theory, it is possible to completely fulfil the fundamental definition of a passive house in the Arctic and therefore to save the cost of traditional heating, but that would incur high costs for the building materials and the provision of technical solutions of extremely high standards which would take too many years to pay back in the life time of a building. The fundamental definition which applies to all climates can be realized in the Arctic regions at very high costs using fundamental design values and the building technologies available in the Arctic.

vii

Abstract

The Arctic is cli matically ve

ry di fferent from a

temperate climate . In the Arctic regi ons, the ambien t

temperature reaches extr eme values a nd it has a direct large impa ct on the hea t lo ss through

the bui lding envel ope an d it creates problems

with the founda tion due

to the per mafrost . The sola r

pattern is comple tely di

fferent due to

the limited av aila bility in wi nter, yet, in summ er, the

sun is

above horizon for

24 hou rs.

Furtherm ore, the sunrays reach

the vertical op aque elemen ts at

shallow angle s. The great wi nds and storms have la rge eff ects on the in filtration of bui ldi ngs and

they hea vily influen ce the infiltrat ion heat loss through the

building envelope . The

wind patterns

have la rge inf luences on the

loca l microclimate around

the buildin g and create the snow

drift and

problems with thawing, icing and possible co

ndensa tion in the bu ilding env elop e. The humid ity in

the in terior is driven o ut through the bu

ilding envelope in the

winte r due to the p ressure di

fference,

strong wi nds and low water ratio in the outdoor air.

The Arctic is als o defin ed by different conditions

such as buildi ng technique

s and avai lability

of the material s and energy suppl

y.

The passi ve house uses the basic idea of a super ene rgy eff icient hou se in which the norm al

hydronic hea ting system can be omitted.

The sav ings in in vestment for a tradition al hydronic

heating system a

re spent on energy conserving

compone nts such

as in creased in

sulation in

a super airtig ht bui lding sh ell, super eff icien t wi ndows to produce the net positive solar gain , an d

a ventil ation system

wi th very effici ent hea t recovery.

To design a passi ve hou se in the way it is

defined by Wolfgan g Fei

st, the founder of

the Pa ssivhaus Institute, its ann ual hea t demand shoul d

not excee d 15 kWh/(m

∙a) and 2

its total primary energy

demand sho uld not exceed 120 kWh/(

2 m

∙a)

in whi ch t he building envelo pe allows li

mited air chang e of 0.6 h

at -1

50 Pa pressurization. The livin g

area of the bui lding is well defin ed acc ording to the standard conditions

as a net area and the heat

of 10

2 W/m

can just be suppl ied by post-hea ting of fresh air after the hea t reco very uni

t wh ich

ensures a satisfactor y in

door air qua lity.

A passive house also takes advantage of free gains such

as sola r hea t, the hea t fr om its occup ants and

their activities,

and the domestic app

liances, and

other sources.

The hy pot hes is in thi s d iss erta tio n is te stin g th e p oss ibi lity of a new us age of an ex tre me ene rgy

effici ent building in the Arctic . The purpo se of this Ph .D.

study is to determ ine

the optimal us e of

an en erg y e ffic ien t h ous e in th e A rct ic der ive d fr om th e fu nda men tal de fin itio n o f a pa ssi ve hou se,

investig ations

of buildi ng parameters

includin g the buildin

g envelope and systems, and

investiga tions of bound ary situations in

the Arctic r egions.

The ob ject of the study is

to analyse current passive

house standa rds used in the temperat

e

climate through the

energy performanc

e of a passi ve hou se in the cold cli mates. In

theory, it is

possible to completely

fulfil the fundamental defin

ition o f a passive house in the Arctic and

therefo re

to save the cost of tradi tional hea

ting, but that wo uld incur high cost s for the buildi ng mater ials and

the provisi on of technica l s olutions of ext remel y hi gh s tandards whic

h wo uld take too many ye

ars to

pay back in the life time of a buildin g. The fundamental

definition which

applies to all cl imates can

be reali zed in the Ar ctic region s at very high costs usin g funda mental desi

gn values and the

building techn ologies availa

ble in the Arct ic.

(9)

viii

Based on th e in vestigatio ns, the optim al ene rgy pe rform ing build ing is deriv ed fr om a passi ve

house concept.

Th e passi ve hou se optimisat ion

follows the main desi

gn rule in the Arctic and this

is

focused on minimiz ing the hea t lo ss bef ore maximizing the hea

t gains followed

by the optimisa tion

of the essential

building ele ments and

the implementa tion of

the necessa ry equ

ipments in the cold

regi ons suc h as a hi ghl y eff icient ventil ation system

wi th hea t recovery.

Furthe rmore,

the impl ementat

ion of a passive house concept in a cold cli mate nee ds to be based on sensib le

solutions regarding mater ial use, and , on a practical leve

l, using available

technol ogie

s and

resources. The adaptati on of a pass ive hou se in the Arctic needs

to take in to ac count al so differ ent

socioeconomi c condi

tions, building tradi tions and use of bui ldings, survival

issue , sustain ability

and

power supply, among others. In

the Arctic, the ene rgy eff icient house based on

a passive house

concept off ers a sustainable solu

tion to the operat ion of the buildi ng with regardi ng the heatin g and

the consu mption of

electr icity, bu t, the energy, money in

vestment and CO

footpr 2

int needed to bui ld

such a house wo

uld be demand ing.

Yet, using these energy

effici ent bui ldings,

there is

an o ppo rtu nity t o im pro ve ind oor c lim ate , hea lth a nd sec urit y tow ard s ext rem e clim ate f or

the in habitant s in the Arctic areas.

Furtherm ore,

the development

and usage of extreme ly

energy eff icient buildi ngs in the Arctic can lead to ne w exper ience s wi th extr emely wel

l-in sulatin g

building comp onents,

airtig ht construct ions and we

ll-fu nctioning ventila tion systems.

viii

Based on the investigations, the optimal energy performing building is derived from a passive house concept. The passive house optimisation follows the main design rule in the Arctic and this is focused on minimizing the heat loss before maximizing the heat gains followed by the optimisation of the essential building elements and the implementation of the necessary equipments in the cold regions such as a highly efficient ventilation system with heat recovery. Furthermore, the implementation of a passive house concept in a cold climate needs to be based on sensible solutions regarding material use, and, on a practical level, using available technologies and resources. The adaptation of a passive house in the Arctic needs to take into account also different socioeconomic conditions, building traditions and use of buildings, survival issue, sustainability and power supply, among others. In the Arctic, the energy efficient house based on a passive house concept offers a sustainable solution to the operation of the building with regarding the heating and

the consumption of electricity, but, the energy, money investment and CO2 footprint needed to build

such a house would be demanding. Yet, using these energy efficient buildings, there is an opportunity to improve indoor climate, health and security towards extreme climate for the inhabitants in the Arctic areas. Furthermore, the development and usage of extremely energy efficient buildings in the Arctic can lead to new experiences with extremely well-insulating building components, airtight constructions and well-functioning ventilation systems.

(10)

ix

Resume

Arktis er klimatisk meget forskellig fra et tempereret klima. I de arktiske områder, når den omgivende temperatur ekstreme værdier, hvilket har stor indflydelse på varmetabet gennem klimaskærmen, som skaber problemer under fundamentet på grund af permafrosten. Solens mønster er helt anderledes på grund af den begrænsede anvendelighed om vinteren, men om sommeren står solen over horisonten 24 timer i døgnet. Endvidere bestråler solen lodrette uigennemskinnelige elementer i lave vinkler. De stærke vinde og storme påvirker infiltration af bygninger meget og har stor indflydelse på varmetabet gennem klimaskærmen. Vindens mønstre har store indflydelse på det lokale mikroklima omkring bygningen og skabe snedrive, samt problemer med optøning, isdannelse og mulig kondens i klimaskærmen. Fugtigheden indendørs drives ud igennem klimaskærmen om vinteren grundet trykforskellen, kraftig vind, samt et lavt vandindhold i luften udenfor. Arktis er også defineret ved forskellige forhold som byggeteknikker og tilgængeligheden af materialer og energiforsyning.

Passivhuse princippet benytter den grundlæggende idé med et super energieffektiv hus, hvor det normale vandbaserede varmeanlæg kan udelades. Besparelserne opnåede ved investering i et traditionel vandbaseret varmesystem bruges på energibesparende komponenter såsom øget isolering, super lufttæt klimaskærm, energi effektive vinduer til opnåelse af solvarme, og et ventilationssystem med en meget effektiv varmegenvinding. At designe et passivhus ud fra metoden defineret af Wolfgang Feist, grundlæggeren af Passivhaus Institut, må husets årlige

varmebehov ikke overstiger 15 kWh/(m2∙a), og det samlede primære energibehov må ikke

overstige 120 kWh/(m2∙a). Luftskiftet for huset skal ligeledes begrænses til 0,6 h-1 ved et overtryk

på 50 Pa. Beboelsesarealet er veldefineret i henhold til normen som et nettoareal, og varmen på

10 W/m2 kan leveres af opvarmet frisk luft, igennem varmegenvinding enheden der sikrer en

tilfredsstillende indendørs luftkvalitet. Et passivhus benytter også fordelen i de gratis gevinster, såsom solvarme, intern varmetilskud fra personer og husholdningsapparater, samt andre kilder.

Hypotesen opsat i denne afhandling er at teste muligheden for en ny anvendelse af en ekstrem energieffektiv bygning i det Arktiske. Formålet med denne Ph.D. afhandling er at bestemme den optimale udnyttelse af et energieffektiv hus i Arktis med udgangspunkt i den grundlæggende definition af et passivhus, undersøgelser af bygnings parametrer herunder klimaskærmen og systemer, og undersøgelser af de afgrænsene situationer i de arktiske områder.

Formålet med undersøgelsen er at analysere aktuelle passivhus standarder, som anvendes i tempererede klimaer, gennem den energimæssige ydeevne af et passiv hus under aktiske forhold.

Det er i teorien muligt at opfylde de grundlæggende definitioner af et passivhus i Arktis og dermed spare udgifterne til traditionel opvarmning, men dette ville medføre store omkostninger i form af byggematerialer, levering af tekniske løsninger af meget høj standard, hvilket ville tage mange år at tilbagebetale i relation til bygningens levetid. Den grundlæggende definition, der gælder i alle klima zone kan realiseres i de arktiske regioner med meget store omkostninger ved benyttelse af grundlæggende design værdier, samt de bygningensteknologier der er til rådighed i Arktis.

Baseret på undersøgelser, stammer den optimale energimæssige bygning fra passivhus konceptet.

Passivhus optimering følger de vigtigste design reglen i Arktis, og det er fokuseret på at minimere ix

Resume

Arktis er klim atisk meget

fors kellig fra et tempereret

kli ma.

I de arkt iske områder , n

år den

omgivende temperatur ekstrem

e vær dier, hvil ket h ar stor in dflydelse p å varm etabet g

enn em

klimaskær men,

som skab er proble mer u

nde r fund amentet på

grund a f per mafrosten . So lens

mønster er hel t and erledes

på grund af den beg rænsede anv endel ighed om vinteren,

men om

sommer en står sole n ove r horiso nten 24

timer i døgnet . En dvide re bestråler solen

lodret te

uigen nems kinnelige

elementer i lave vi nkler.

De stærke vind e o g stor me p åvirker infiltratio n a

f

bygning er meget og har stor in dflydelse på

varm etabet g

enn em klim askærmen

. Vi ndens mønstr e

har s tor e i ndf lyd els e p å d et lok ale m ikr okl im a o mkr ing b ygn ing en og s kab e s ned riv e, sam t

problemer med optøning,

isda nnelse o

g muli g kon dens i kl imaskærmen

. F ugtighed en inde ndørs

drives ud ige nnem kli maskær men om vinteren grunde

t tr ykforskelle n, kraftig vind, samt et la vt

vandin dhold i lu ften udenfor . Arktis er ogs å defin eret ve d fors kellige forhold som byggetekn ikker o

g

tilgænge ligh eden af mater ial er o g ene rgifors yning.

Passivhus e princi ppet be nytt er den grundl æggende idé

med e t su per ene rgieffektiv

hu s, hv or de t

normale vandba serede

varm eanlæg kan udelades.

Be sparelserne

opnåed e ved in vestering

i e t tr aditionel vandb aseret varm

esystem bruges p å ene rgibespa

rende kompo nenter

såsom øget

isoleri ng, supe r lufttæ t klimaskær m,

energi effekti ve vinduer til opnå else af solvarm e, og

et v ent ila tio nss yst em m ed en m ege t e ffe ktiv v arm ege nvi ndi ng.

A t d esi gne e t p ass ivh us ud fra

metoden defi neret a

f Wolfgan g Feist

, grundl æggeren

af Pa ssivhaus Institut

, m å husets å rlige

varmebe hov ikke overstig er 15

kWh/(m

∙a), 2

og det s am led e p rim ære e ner gib eho v m å ik ke

overstige 120 kWh/(

2 m

∙a). L ufts kift et f or h use t s kal lig ele des be græ nse s ti l 0,

-1 6 h

ved et overtryk

på 50 Pa.

B ebo els esa rea let er ve lde fin ere t i hen hol d ti l n orm en som et ne tto are al, og va rm en på

10 W

2 /m

kan leveres af opvarmet frisk

lu ft, igenn em varm egenvind

ing enh eden d er sikrer e n

tilfredsstillen de inde ndørs luft kvalitet . E t passi vhus benytter også fordelen

i d e gratis gevinster

,

såsom solva rme, in tern var metilskud fra pe

rsoner og hush oldn

ings appa rater, samt andre kilder.

Hypotesen opsat i den ne afhandl ing er at teste mulighe den for en ny anven del se af en ek strem

energieffekt iv bygni

ng i de t Arktis ke. Formålet med den

ne P h.D. afhandl ing er

at bestem me den

optimale udnytt else af et ene rgieffektiv

hus i Arktis med udgan

gspunkt i de n grundl æggend

e

definition af et passivh us, und ersøgels

er af bygnings

parametr er

herunder k limaskær men og

systemer, og und ersøgelser af

de a fgræn sene situationer i de arkt

iske områder.

Formålet med undersøgelsen

er at analysere aktuel

le p assivh us standard er,

som anve ndes

i temper erede klima

er, gennem den energimæssige yd eevne af

et p assiv hus under

aktiske forhol d.

Det er i teorie n muli gt at opfylde de grun dlæggen de defini tioner af et passi vhus i Arktis

og der med

spare udg ifterne til tr aditionel opv armni ng, men det te vil le me dføre stor

e o mkostni nger i fo rm

af bygge materia

ler, leverin g af tekniske løsn

inger af meget høj stand

ard, hvil ket vil le tage mange

år

at tilba gebetale i relatio n til bygni ngens levetid

. De n g rundlæggen

de definition , der gæld er i alle

klima zone k an reali seres i de arktiske regi oner med meget store

omkostninger ved benytt else af

grundlæggende desig n værdie

r, sam t de bygni ngensteknolo

gie r der er til rådigh ed i Arkt

is.

Baseret på unde rsøgelser, stam

mer den optimale

ene rgimæ ssige b ygning fra passivhu s ko ncept et.

Passivhus optimer

ing følger de vigtigste design regle n i Arktis, og det er fokuseret på at

minimer e

(11)

x

varmetabet før

varmen tilskud det mak simeres

efter fulgt a f en optimering af

de væsentligste

bygning sdele, samt gen nemfør elsen af de t nødvend ige ekvipering, som et

meget effektiv

t

ventilatio nsanlæg med

varmege nvindin g, i de arkt iske region er. De suden skal

genn emførel

sen af

et passi vhus konce

pt i arktisk kli ma vær e baser et på fornuftige

løsninger med hensyn

til

materia leforbr ug, og på det praktiske pl

an, ved hj ælp af tilgæn gelig e teknolo gie r og ressourcer. De

r

skal ligel ede s tage s høj de for fors kellig e socioøko nomiske forhold,

byggesk ik og brugen af

bygning er, bæredygtighed

og str ømforsyning , ved tilpasninge n

af et passivhus

i Arktis .

Et ene rgieffektive

hus i arktisk som er ba seret på et p assivhus kon cept tilbyder bæredygtig lø

sning

for drift en af bygni ngen med hen syn til opvarmnin g og

forbrug af el , men dette vil

vær e meget

krævende at bygge så dan et hus grundet ene rgien , d en økonomis ke in

vestering og CO

-aft 2

rykket.

Men ved at bygge d isse ene rgieffektiv

e bygninge r, er

der mulighed for at

forbedre inde klima,

sundhed og sikre beb oerne mod ekstrem vejr i de arkt iske egne . De suden k an udvi klin gen og

brugen af ekstremt

energie ffektive bygni

nger i Arkti s før e til nye opl evelser med ekstremt

godt

isoleren de bygni

ngsdele, lufttæt konst ruktio

ner og velfungerend e ventila

tionsanl æg.

x

varmetabet før varmen tilskuddet maksimeres efterfulgt af en optimering af de væsentligste bygningsdele, samt gennemførelsen af det nødvendige ekvipering, som et meget effektivt ventilationsanlæg med varmegenvinding, i de arktiske regioner. Desuden skal gennemførelsen af et passivhus koncept i arktisk klima være baseret på fornuftige løsninger med hensyn til materialeforbrug, og på det praktiske plan, ved hjælp af tilgængelige teknologier og ressourcer. Der skal ligeledes tages højde for forskellige socioøkonomiske forhold, byggeskik og brugen af bygninger, bæredygtighed og strømforsyning, ved tilpasningen af et passivhus i Arktis.

Et energieffektive hus i arktisk som er baseret på et passivhus koncept tilbyder bæredygtig løsning for driften af bygningen med hensyn til opvarmning og forbrug af el, men dette vil være meget

krævende at bygge sådan et hus grundet energien, den økonomiske investering og CO2-aftrykket.

Men ved at bygge disse energieffektive bygninger, er der mulighed for at forbedre indeklima, sundhed og sikre beboerne mod ekstrem vejr i de arktiske egne. Desuden kan udviklingen og brugen af ekstremt energieffektive bygninger i Arktis føre til nye oplevelser med ekstremt godt isolerende bygningsdele, lufttæt konstruktioner og velfungerende ventilationsanlæg.

(12)

xi

Symbols and abbreviations

Agross Gross heated area [m2]

Ai Surface area [m2]

ATFA Treated floor area [m2]

Aw Window area [m2]

cAIR Heat capacity of air [Wh/(m3·K)]

O Oil consumption [litres]

D Number of days [-]

ø diameter of insulated pipe [mm], [m]

e Ratio of total floor area to footprint area [-]

fT Temperature factor [-]

g, g-value Solar energy transmittance [-]

G Solar radiation on vertical surfaces [kWh/(m2·a)]

Gh Global radiation horizontal [kWh/(m2·a)]

Gk Global radiation on tilted surface [kWh/(m2·a)]

HDH Heating degree hours [kKh/a]

HDD Heating degree days [Kd/a]

λ Thermal conductivity [W/(m∙K)]

li Length of outer thermal bridges [m]

n Infiltration at normal pressure [h-1]

ηHR Efficiency of heat exchanger system [-]

ninfiltration Infiltration air change rate [h-1]

nV Effective air change rate [h-1]

nV,System Average air change rate [h-1]

n50 Air change rate at 50 Pa [h-1]

η Efficiency [%], [-]

q50 Leakage rate at 50 Pa [l/s m2]

QT Transmission heat loss [kWh]

QV Ventilation heat loss [kWh]

Qinf Infiltration heat loss [kWh]

QI Internal heat gains [kWh]

QS Solar gains [kWh]

xi

Symbols and abbrevi ations

A

gross

Gross heated area

2 [m

]

A Surfa i

ce area

2 [m

]

A

Treated TFA

floo r area

2 [m

]

A

Win w

dow area

2 [m

]

c

Heat ca AIR

pacity of ai r [Wh/(m

·K)] 3

O Oil consum

ption [litres]

D Num

ber o f days [-]

ø diameter o

f insul ated pipe

[mm], [m]

e Ratio o

f tot al fl oor area to fo otprint ar

ea [-]

f

Temper T

ature factor [-]

g, g-v alue Solar en

ergy tr ansmitta nce [-]

G Solar ra

diation on vertical s urfaces

[kWh/(m

·a) 2

]

Gh Global ra

diation hori zon tal [kWh/(m

·a) 2

]

Gk Global ra

diation on tilted s urface

[kWh/(m

·a) 2

]

HDH Heating

degree h ours

[kKh/a]

HDD Heating

degree d ays

[Kd/a]

λ Therm

al c ondu ctivity [W/(m∙

K)]

l Leng i

th o f outer the rmal bridge s [m]

n Infiltration at n

ormal pressur e

-1 [h

]

η

Effici HR

ency of he at exchan ger s ystem [-]

n

infiltratio

Infil n

tration a ir change rat e

-1 [h

]

n

Effective a V

ir change rate

-1 [h

]

n

V,Syst

Aver em

age air change rate

-1 [h

]

n

Air change rat 50

e at 50 P a

-1 [h

]

η Efficiency

[%

], [- ]

q

Leakage rat 50

e at 50 Pa [l/s m

] 2

Q

Tran T

smiss ion h eat l oss [kWh]

Q

Ven V

tilation h eat loss [kWh]

Q

Infil inf

tration h eat loss [kWh]

Q Inte I

rnal heat g ains [kWh]

Q

Solar g S

ains [kWh]

(13)

xii

ψ Linear hea

t co efficient [W/

(m·K )]

r Shadin i

g factor [-]

ρ Air density (1.

2 kg/m

) 3

[kg/m

] 3

S Solar i

radiati on on vertical s urface

[kWh/m

] 2

T

supply

Temper ature of the supply a ir after th e heat exchan

ger [ºC]

T

ext

Extract a ract

ir tempe ratu re [ºC]

T

amb,j

, T

ambi

Aver ent

age mon thly tem peratu re [ºC]

T

avg,a

Average an nual ambi

ent tem pera ture [ºC]

T

Base tem base

perat ure [ºC]

T Inte i

rior desi gn temperatu re [ºC]

T

outdo or,d esig

Temper n

ature of ou tdoo r desi gn day [ºC]

T

supply,ai

Maximum s r

upply ai r temper ature [ºC]

U

U-valu i,

e Therm

al tr ansmittance [W/(m

∙K)] 2

V Volum

e of a building

3 [m

]

V

Internal volum net

e of a building

3 [m

]

V

Volum V

e of a ir

3 [m

]

V

Ref RAX

erence volu me of th

e ventilation syst em

3 [m

]

V

Climat 1,2

e scenar ios, t empera tur e diff erence [ºC]

V

Air flow at 50 P 50

a [l/s], [m

] 3

w

Air change rat 50

e at 50 P a [l/s m

] 2

xii

ψ Linear heat coefficient [W/(m·K)]

ri Shading factor [-]

ρ Air density (1.2 kg/m3) [kg/m3]

Si Solar radiation on vertical surface [kWh/m2]

Tsupply Temperature of the supply air after the heat exchanger [ºC]

Textract Extract air temperature [ºC]

Tamb,j, Tambient Average monthly temperature [ºC]

Tavg,a Average annual ambient temperature [ºC]

Tbase Base temperature [ºC]

Ti Interior design temperature [ºC]

Toutdoor,design Temperature of outdoor design day [ºC]

Tsupply,air Maximum supply air temperature [ºC]

Ui, U-value Thermal transmittance [W/(m2∙K)]

V Volume of a building [m3]

Vnet Internal volume of a building [m3]

VV Volume of air [m3]

VRAX Reference volume of the ventilation system [m3]

V1,2 Climate scenarios, temperature difference [ºC]

V50 Air flow at 50 Pa [l/s], [m3]

w50 Air change rate at 50 Pa [l/s m2]

(14)

xiii

Content

Chapter 1 Introduction

1.1 Energy use worldwide 1.2 Research questions 1.3 Outline of the thesis 1.4 Objective of the thesis

1 1 3 3 4

Chapter 2 The European passive house

2.1 Definition of a European passive house 2.2 Implementation of a European passive house

5 6 9

Chapter 3 Methods for optimisation

3.1 Background for optimisation methods

3.2 Optimisation methods for a passive house for the Arctic climate 3.3 Conclusion on optimisation

11

11 12 14

Chapter 4 The Arctic

4.1 Definition, climate and population 4.2 Residential buildings in the Arctic

4.3 Building techniques and technologies

4.4 Energy systems in buildings

15 15 17 21 24

Chapter 5 Performance of a fundamental passive house in the Arctic

5.1 Space heating demand 5.2 Heating load

5.3 Primary energy

27 27 30 33 xiii

Content

Chapter 1 Introduc

tion 1.1 Energy use worldwide

1.2 Research questions

1.3 Outlin e of the thesis

1.4 Obj ective of the t

hesis

1 1 3 3 4

Chapter 2 The Europe

an pass ive house

2.1 Definition of a Europe an passive hou

se

2.2 Im plementation of a Euro

pean pass ive house

5 6 9

Chapter 3 Methods for

optimisati on

3.1 B ackgroun d for optimisat ion methods

3.2 Opt imisatio n methods for a passi ve hous e for the Arctic

clim ate

3.3 C onclusio n on optimis ation

1 1

11 12 14

Chapter 4 The Arctic

4.1 Definition, climate and populatio

n

4.2 Residen tial buildings in the Arctic

4.3 Buildi ng te chniques and t echnologies

4.4 Energy systems in bui ldings

15 15 17 21 24

Chapter 5 Perfor

mance of a fundamental

passive hous e in t

he Arctic

5.1 Sp ace heating de

mand

5.2 Heating lo ad

5.3 Primary e nergy

27 27 30 33

(15)

xiv

Chapter 6 Evaluati

on of decisi on variables for opti

mising to be develope d for

passive hou ses

in the Ar ctic 35

6.1 Fundamental and national val ues

6.2 The in sulatio n of the b uilding

6.3 Win dows

6.4 Air tig htness

6.5 Heating a nd ventilatio

n systems

35 39 41 45 46

Chapter 7 Qualitative

objectives and challenge

s for passive houses

in the

Arctic cli mate 51

7.1 Thermal comfort 7.2 Sustainab le value

7.3 Temperat ure stabi

lity

7.4 Socio- economic cond itions and

culture gap

7.5 E nergy s upply

51 52 54 56 57

Chapter 8 Adaptati

on and optimisat

ion requirem ents fo

r the use of a pas sive

house in the Arctic

59

8.1 An optimal energy effici ent house based on

a passive house idea

8.3 De sign ap proach for

energy ef ficient bui

ldings in t he Arctic

59 61

Chapter 9 Thesis

summary 9.1 Conclus ions

9.2 Suggestio ns for furt her w ork

65 65 67

Chapter 10 Summary of appen

ded papers 69

Chapter 11 References

71

xiv

Chapter 6 Evaluation of decision variables for optimising to be developed for

passive houses in the Arctic

35

6.1 Fundamental and national values 6.2 The insulation of the building 6.3 Windows

6.4 Air tightness

6.5 Heating and ventilation systems

35 39 41 45 46

Chapter 7 Qualitative objectives and challenges for passive houses in the

Arctic climate

51

7.1 Thermal comfort 7.2 Sustainable value 7.3 Temperature stability

7.4 Socio-economic conditions and culture gap 7.5 Energy supply

51 52 54 56 57

Chapter 8 Adaptation and optimisation requirements for the use of a passive

house in the Arctic

59

8.1 An optimal energy efficient house based on a passive house idea 8.3 Design approach for energy efficient buildings in the Arctic

59 61

Chapter 9 Thesis summary

9.1 Conclusions

9.2 Suggestions for further work

65 65 67

Chapter 10 Summary of appended papers 69

Chapter 11 References 71

(16)

xv

Appended papers (I-VI) 77

Paper I

Vladykova P., Rode C., Nielsen T.R., Pedersen S. Passive houses for the

Arctic climates. Passivhus Norden Conference, 2008.

79

Paper II

Bjarløv P., Vladykova P. The potential and need for energy savings in

standard family detached and semi-detached wooden houses in arctic

Greenland. Building and Environment, 2010.

89

Paper III

Vladykova P., Rode C., Kragh J., Kotol M. Low-energy house in Arctic

climate - 5 years of experience. Accepted in the Journal of Cold Regions

Engineering, 2011.

115

Paper IV

Vladykova P., Rode C., Nielsen T.R., Pedersen S. Passive houses in the

Arctic. Measures and alternatives. International Conference on Passive House,

2009.

137

Paper V

Vladykova P., Rode C. The energy potential from the building design’s

differences between Europe and the Arctic. Nordic Symposium on Building

Physics, 2011.

147

Paper VI

Vladykova P., Rode C. The study of an appropriate and reasonable building

solution for Arctic climates based on a passive house concept. Submitted to

the Journal of Cold Regions Engineering, 2011.

159 xv

Appen ded p apers (I

77 -VI)

Paper I

Vladykova P., Ro

de C., Nielsen

T.R., P edersen S. P assive house s for the

Arctic climates . Pass ivh us Nor den C onf ere nce , 2 008 .

79

Paper I I

Bjarløv P., Vl adykova

T P.

he potentia l and

nee d fo r ene rgy savi ngs in

standard fami ly detache d and

semi -detache d wo

oden hou ses in arct ic

Green land . Bui ldin g and Environm

ent, 201 0.

89

Paper I II

Vladykova P.,

Rode C., Kragh J., Ko tol M.

Low -ene rgy hou se in Arctic

climate - 5 years of experie nce.

Acc epted in

the J ournal of Cold Region s

Engine ering, 2 011.

115

Paper I V

Vladykova P.,

Rode C., Nielse n T.R., P edersen S. P assive house s in the

Arctic. Measures and al

ternatives.

Interna tional Confer

ence on Passiv e H ouse,

2009.

137

Paper V Vladykova P., Rod

The ene e C.

rgy po tential fr om the building desi

gn’s

differences betwee

n Eu rope and the Arctic

. N ord ic Sym pos ium o n B uild ing

Phys ics, 2011.

147

Paper VI Vladykova P., Ro

de C.

The study of an appropriate and

reasonabl e bui lding

solution for A rctic climates based on a passi ve ho use conce pt.

Sub mitted to

the Jou rna l o f C old R egi ons En gin eer ing , 2 011 .

159

(17)

xvi

xvi

(18)

1

1 Introduction

1.1 Energy use worldwide

The environmental impact from human habitation in buildings has increased dramatically in the last half of the twentieth century in which a higher comfort level in buildings has led to a construction of many buildings which use tremendous amounts of non-renewable sources such as electricity and oil. The energy consumed in the building sector originates from both non-renewable and renewable resources. The non-renewable resources are limited and close to depletion, and natural gas and oil resources may be depleted by the year 2050. Furthermore, coal and uranium will run out in the year 2140 [1]. A natural resource is a non-renewable resource often used in the building sector, i.e. replaced by natural processes and parts of the natural environment and eco-system.

The renewable resources are wind power, hydropower, solar energy, geothermal energy, bio fuel and biomass.

Energy use in the world is divided between three major sectors: the transport, building and industry sectors with the following distributions (Fig. 1). In the European Union, residential and office buildings together use up to 25% [2] whilst approximately 40% of the total energy consumption is used in the building sector in developed countries, i.e. USA: 22% in residential and 19% in commercial buildings [3]. The energy consumed in the building sector comprises energy needed to cover heating / cooling, hot water consumption, lighting, electricity and other areas. The amount of energy used per household varies widely and depends on standard of living, climate, and building structures. The average household in a temperate climate has an annual household energy use of total 20,000 kWh/a (Fig. 2) [4].

Fig. 1. Primary energy use in EU in 2008 [2]

Reduction of energy demand and energy consumption in buildings is the key factors in reducing the depletion of natural resources and limiting emission pollutants. The desire for a better energy scenario demands more sensible solutions within the building sector, specifically speaking of residential housing, commercial buildings and other buildings offering services. The current

average total energy consumption in buildings is 250 kWh/(m2·a) or higher in Germany [5]. As seen

Residential and services

36%

Non-energy use 9%

Industry 28%

Transport 27%

Residential and services Non-energy use Industry Transport

1

1 Introduction

1.1 Energy use world

wide

The env ironmental impa

ct from human habi

tatio n in bui ldings has increased dra

matically in th e la st

half of the twentie th century

in which a hig her comf ort le vel in bu ildings has led to a constructio

n of

many bui ldings which use tr emendous

amounts of non -re newable sources such as

electr icity and

oil.

The e nergy consumed in the bui ldi ng sector originates

from both non-renewable and

ren ewa ble

resources. The non -renewable resources

are limited and close

to deple tion, and natural gas and

oil

resources may be dep leted by the year 2050.

Furthermore, coal and uranium will

run out in

the year 2140 [1]. A natural resource

is a non -renewab le resource

oft en used in th e bu ildin g sec tor,

i.e. replac ed

by natural processes a

nd parts of the

natural environment and eco -sy stem.

The re new abl e r eso urc es are w ind po wer , h ydr opo wer , s ola r e ner gy, ge oth erm al e ner gy, bi o fu el

and biomass.

Energy use in the wo rld is divided between three

major sectors:

the transpo rt, bui ldin g and in dustr y

sectors wi th the follo wing di strib utions (Fig . 1 ). In the Eu ropean Union, resi dential and off ice

buildings together

use up to 25%

[2] wh ilst approx imately 40% of

the tot al ene rgy consu mption is

used in the building sector

in devel oped countrie s, i.e.

USA:

22% in resid ential

and 1 9% in

commercial bui ldings [3]

. The ene rgy co nsumed in

the building sector comprises ene

rgy nee ded to

cover hea ting / coolin g, hot wa ter consu mption, lighting,

el ectrici ty and other areas. The

amount of

energy used per househol d varies widely

and de pends on standard of livi ng, cli mate, and build ing

structur es. Th e average ho usehold in a temperate climate

has an annual hou sehol d en ergy use of

total 20,000 kWh/a (Fig

. 2) [ 4].

Fig. 1.

Primary energy use in EU i

n 2008 [2]

Reductio n of energy demand and

ene rgy consumption in bui ldi ngs is the key factors in reducing the

deple tion of natural resources

and li miting emission

pol lutants.

The desi re for a better ene rgy

scenario demands more sensi

ble solutions withi

n the build ing sector, spe cifically speaking

of

residentia l h ousing, commercial buil

dings and oth

er bui ldi ngs off ering servi

ces. The cu rren t

average tot al ene rgy consum ption in

bui ldi ngs is 250 kWh/(

2 m

·a) or highe r in Germany [5]. As seen

Resident ial an

d 36% services

Non-en ergy use 9%

Indu

stry 28%

Transpo rt 27%

Resident ial an d services

Non-en ergy use

Indu stry

Transpo rt

(19)

2

in Fig . 2 , the la rgest amount of consu

med ene rgy in a hou sehold is related to

the hea ting of

the bui ldings and

it is us ual ly more than

half of the tot al consum ption. An

nual ene rgy us ed for

space heating varies for resi

dentia l hou ses in a t emperate climate f

rom 100 to 25 0 kWh/(m

·a) [5] 2

.

Fig. 2.

Ene rgy use in a house hold in a

tempera te climat e of Germa

[4] ny

Reviewin g th e national Statistics

for co untries wi

th a cold climate provides

inform ation on

en ergy

consumption in these col

d countries wh

ich vari es fr om 181 kWh/(

2 m

·a) in Norway [6]

,

213 k Wh/

2 (m

·a) in Canada [7]

, to 416 kWh/(

2 m

·a) in Gr eenla nd [8]

. The hea ting consu mption is

covered by n atural resour ces, e.g.

oil based h eating system or electr icity systems.

Re newable

resources are being experimented

with and they are slowly bei ng adopted to supply this ene rgy

through hydropo wer

and wind power, among others.

Ho wever energy obtain ed fr om na tural

resources is more oft en used due to avail ability and it is curr ently cheap

er due to the absence of

Valu e Adde d Tax.

Those regions wi

th extr emel y cold cl imates represent chal

lenges for building construction

of ene rgy

effici ent hou sin g. The bu ilding cha lleng es are based on

the followin g criter

ia: envi ronmental

conditio ns, lif estyles and

constr uction seaso

n. The harsh environmenta

l condi tions are

characterized by prevalent

low temperatures, drift ing snow and str ong wind.

In cold cl imate region s,

different lifest yles, which include a

wide range of cu ltures and lifes tyles, exist

and some of these

can gen erate consi derable

moisture indo

ors and oft en require a hi gh indoo r tempe rature.

The shor t

constructio n season is defined by hi gh tr ansportation costs and d ifficul ties due to the remoteness of

the region , the availabi lity of skil led labo ur and hig h technol ogy equi pment, and hi gh ene rgy costs

[9].

Firstly, it is important to bring

focus to the bad stat e of the hou ses in the Arctic region

s, as many

houses offer unsuitab le living conditions wi

th hig h en ergy costs.

Thu s, it is imp ortant to come up

with new i deas for hi ghly energy effici ent bui ldings wh ich wil l improve both existi

ng and new

houses.

There is a need for super ene rgy eff icient houses with a mini mum yet reasonabl

e use of

energy with in the cultural, technical

and envi ronmental aspects

in th e extr eme clim ate of the Arctic.

Theref ore, th e relevance o

f this st udy is sign

ificant f or the Arctic regi

ons.

Heating

60% n r ptio 15% sum Hot wate con

Cooling (refrig

erato

r) 6%

Ligh

ting 6%

Washi ng an d 5% drying Cookin g 5%

Electricit y 3%

Heating Hot wate r consumpt

ion g tor) d dryin rigera y (refg ng an ting Cooling Ligh Washi Cookin Electricit

2

in Fig. 2, the largest amount of consumed energy in a household is related to the heating of the buildings and it is usually more than half of the total consumption. Annual energy used for

space heating varies for residential houses in a temperate climate from 100 to 250 kWh/(m2·a) [5].

Fig. 2. Energy use in a household in a temperate climate of Germany [4]

Reviewing the national Statistics for countries with a cold climate provides information on energy

consumption in these cold countries which varies from 181 kWh/(m2·a) in Norway [6],

213 kWh/(m2·a) in Canada [7], to 416 kWh/(m2·a) in Greenland [8]. The heating consumption is

covered by natural resources, e.g. oil based heating system or electricity systems. Renewable resources are being experimented with and they are slowly being adopted to supply this energy through hydropower and wind power, among others. However energy obtained from natural resources is more often used due to availability and it is currently cheaper due to the absence of Value Added Tax.

Those regions with extremely cold climates represent challenges for building construction of energy efficient housing. The building challenges are based on the following criteria: environmental conditions, lifestyles and construction season. The harsh environmental conditions are characterized by prevalent low temperatures, drifting snow and strong wind. In cold climate regions, different lifestyles, which include a wide range of cultures and lifestyles, exist and some of these can generate considerable moisture indoors and often require a high indoor temperature. The short construction season is defined by high transportation costs and difficulties due to the remoteness of the region, the availability of skilled labour and high technology equipment, and high energy costs [9].

Firstly, it is important to bring focus to the bad state of the houses in the Arctic regions, as many houses offer unsuitable living conditions with high energy costs. Thus, it is important to come up with new ideas for highly energy efficient buildings which will improve both existing and new houses. There is a need for super energy efficient houses with a minimum yet reasonable use of energy within the cultural, technical and environmental aspects in the extreme climate of the Arctic.

Therefore, the relevance of this study is significant for the Arctic regions.

Heating

Hot water 60%

consumption 15%

Cooling (refrigerator)

6%

Lighting 6%

Washing and drying

5%

Cooking 5%

Electricity

3% Heating

Hot water consumption Cooling (refrigerator) Lighting

Washing and drying Cooking Electricity

Referencer

RELATEREDE DOKUMENTER

However, based on a grouping of different approaches to research into management in the public sector we suggest an analytical framework consisting of four institutional logics,

Million people.. POPULATION, GEOGRAFICAL DISTRIBUTION.. POPULATION PYRAMID DEVELOPMENT, FINLAND.. KINAS ENORME MILJØBEDRIFT. • Mao ønskede så mange kinesere som muligt. Ca 5.6 børn

1942 Danmarks Tekniske Bibliotek bliver til ved en sammenlægning af Industriforeningens Bibliotek og Teknisk Bibliotek, Den Polytekniske Læreanstalts bibliotek.

Over the years, there had been a pronounced wish to merge the two libraries and in 1942, this became a reality in connection with the opening of a new library building and the

H2: Respondenter, der i høj grad har været udsat for følelsesmæssige krav, vold og trusler, vil i højere grad udvikle kynisme rettet mod borgerne.. De undersøgte sammenhænge

Driven by efforts to introduce worker friendly practices within the TQM framework, international organizations calling for better standards, national regulations and

Until now I have argued that music can be felt as a social relation, that it can create a pressure for adjustment, that this adjustment can take form as gifts, placing the

maripaludis Mic1c10, ToF-SIMS and EDS images indicated that in the column incubated coupon the corrosion layer does not contain carbon (Figs. 6B and 9 B) whereas the corrosion