• Ingen resultater fundet

Quantification of EDS spectra

N/A
N/A
Info
Hent
Protected

Academic year: 2022

Del "Quantification of EDS spectra"

Copied!
30
0
0

Indlæser.... (se fuldtekst nu)

Hele teksten

(1)

Quantification of EDS spectra

EDS User School

Mats Eriksson

Spectral Solutions AB

(2)

Overview

I.) Quantification step by step (= review „method editor“):

1.) Identification 2.) Background fit

3.) Deconvolution models (Bayes vs. FIT)

4.) Quantification (standardless vs. standard-based)

II.) Correction methods:

à ZAF

à PhiRhoZ

III.) Solid samples – rough surfaces

(3)

1.

2.

I.) Quantification – step by step:

(4)

1.

2.

3.

4.

I.) Quantification – step by step:

(5)

Ident BG

Dec Quant

1. 2.

3. 4.

I.) Quantification – step by step:

If you want

all 3 windows

to pop up …

(6)

1.

2.

3.

4.

I.) Quantification – step by step:

… you need to select:

3 times!!!

(7)

a) you want to identify the elements („Ident“ window pops up)

b) elements are identified via Auto-ID („Ident“ window does not pop up)

c) you want the software to use the line markers that you have already set (via periodic table ) while (or after) the spectrum was acquired

d) you want to pre-select specific elements – click on those

elements in the periodic table until they are bold = fixed list elements

a) b) c) d)

I.) Quantification of EDS spectra:

1. Identification

(8)

e)  you want to quantify one or more elements as oxides [enter compound(s) in this column and press „enter“]

f)  you know the concentration of a certain element (in wt%) g)  you want to include a certain

element for deconvolution, but not for quantification (e.g., Au or C coating) h)  you want to quantify an

element (or compound) by difference to 100 wt%

e) f) g) h)

I.) Quantification of EDS spectra:

1. Identification

(9)

Overview

I.) Quantification step by step (= review „method editor“):

1.) Identification 2.) Background fit

3.) Deconvolution models (Bayes vs. FIT)

4.) Quantification (standardless vs. standard-based)

II.) Correction methods:

à ZAF

à PhiRhoZ

III.) Solid samples – rough surfaces

(10)

I. Quantification of EDS spectra:

2. Background fit

(11)

Overview

I.) Quantification step by step (= review „method editor“):

1.) Identification 2.) Background fit

3.) Deconvolution models (Bayes vs. FIT)

4.) Quantification (standardless vs. standard-based)

II.) Correction methods:

à P/B ZAF à PhiRhoZ

III.) Solid samples – rough surfaces

(12)

What does deconvolution mean?

n  the background-corrected peak intensities (=net intensities) are

attributed to the selected elements according to a mathematical model n  an „experimental“ spectrum (colored+gray) is calculated and

can be compared to the acquired spectrum (black line)

I. Quantification of EDS spectra:

3. Deconvolution

(13)

à looking at the deconvolution result helps you to recognize whether you have overlooked an element or identified an element wrongly:

I. Quantification of EDS spectra:

3. Deconvolution

(14)

à the deconvolution result (Series deconvolution and Series Fit) show whether your energy-channel calibration is ok or not:

well calibrated spectrum not well calibrated

(minus 20 eV)

Attention! If Bayes deconvolution is used, you won‘t see if your spectrum is well calibrated!

I. Quantification of EDS spectra:

3. Deconvolution

(15)

I. Quantification of EDS spectra:

3. Deconvolution

We recommend

BAYES

FIT

à Deconvolution models (BAYES vs. FIT):

(16)

Advantages & disadvantages of the different models:

à  Bayes Deconvolution (= single Bayes):

+ if relationships between line intensities within a series change due to

binding effects (= differ from theoretical values), e.g., intensities of Ti-Ll and Ti-Lα for TiC and TiO2

– if energy channel calibration is bad, you won’t notice

à  Series Deconvolution (= Series Bayes):

+ stable, if you have many peaks overlapping

+ less sensitive regarding energy channel calibration than Series Fit

à  Series Fit Deconvolution:

sensitive regarding energy channel calibration, but if calibration is ok then:

+

stable, if you have many peaks overlapping

+ works better than Series Bayes for noisy spectra (e.g., noisy = acquisition time was too short)

+ compensates better, if a certain element was forgotten / not identified

I. Quantification of EDS spectra:

3. Deconvolution

(17)

Overview

II.) Correction methods:

à P/B-ZAF à PhiRhoZ

III.) Solid samples – rough surfaces I.) Quantification step by step

(= review „method editor“):

1.) Identification 2.) Background fit

3.) Deconvolution models (Bayes vs. FIT)

4.) Quantification (standardless vs. std-based)

(18)

Two Options:

n  standardless

(fast)

n  standard-based

(time-consuming, but better results)

How do we derive the chemical composition of a sample

(elemental abundances in wt% or atom%) from the EDS spectrum?

5 6 7 8 9 10 11

keV 0.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

cps/eV

1

Ni

Ni Fe

Fe

Cr Cr

Nb Nb

Nb Mo Mo

Mo

Ti Ti

Al

Correction methods:

n  P/B-ZAF n  PhiRhoZ

n  Cliff-Lorimer (TEM)

I. Quantification of EDS spectra:

4. Quantification

(19)

Std i F A Z

S i F A Z Std

i S i Std

i S i

k k k

k k k N

N C

C

, ,

) (

)

∝ (

br i A Z

char i F A Z br i

i char i

i

k k

k k C k

N N B

P

, ,

) (

)

∝ (

⎟ =

⎠

⎜ ⎞

⎝

⎛

standard-based ZAF:

standardless P/B-ZAF:

I. Quantification of EDS spectra:

4. Quantification

(20)

Standard-based Standardless

+

n  Determination of absolute element concentrations normalized to

standard

n  Influence of matrix corrections

similar if standard similar to sample n  Small statistical error for net counts

of intense lines

n  Some inaccurately known atomic data cancel out

n  No standard needed

n  Peak and BG spectrum acquired at the same time

n  Spectrum evaluation can be checked step by step

n  Errors due to TOA, detector, surface roughness cancel out n  Evaluation of rough samples

n  More time-consuming, as you need at least two measurements

n  Only accurate for homogeneous and polished samples

n  you need to carefully monitor beam current, microscope and EDS

detector settings (use same

parameters for sample and standard)

n  Larger statistical error,

especially for low background n  Accurate determination of

background necessary

I. Quantification of EDS spectra:

4. Quantification

(21)

Overview

II.) Correction methods:

à ZAF

à PhiRhoZ

III.) Solid samples – rough surfaces I.) Quantification step by step

(= review „method editor“):

1.) Identification 2.) Background fit

3.) Deconvolution models (Bayes vs. FIT)

4.) Quantification (standardless vs. std-based)

(22)

II. ZAF correction

Z: atomic number

differences in deceleration of the primary electrons A: absorption

absorption of primary emitted characteristic x- rays F: (secondary) fluorescence

generation of secondary x- ray fluorescence by

characteristic radiation

(23)

Unlike ZAF, which is conceived as a matrix correction procedure, the φρ z method is a general model for the calculation of X-ray intensities.

The emitted and generated intensity can be calculated from a modified Gaussian expression.

II. PhiRhoZ correction

(24)

One of the most difficult situations is the measurement of light elements.

The ZAF method breaks down at low Z, due primarily to:

•  Uncertainties in absorption coefficients at low Z.

•  Uncertainty in J (mean ionization potential) at low Z.

•  J can vary with chemical bonding, e.g. J=109 for atomic Al, J=149 for metal.

φρ z improves the expressions for Z effects and does a better determination of absorption effects.

à Thus it is a better correction method for light element analysis.

II. PhiRhoZ correction

(25)

Overview

II.) Correction methods:

à ZAF

à PhiRhoZ

III.) Solid samples – rough surfaces I.) Quantification step by step

(= review „method editor“):

1.) Identification 2.) Background fit

3.) Deconvolution models (Bayes vs. FIT)

4.) Quantification (standardless vs. std-based)

(26)

III.) Solid samples: rough surfaces

points #1-6 on

smooth surfaces

points #7-12 on

rough surfaces

à galvanically produced Ni-P layer: 12 analysis points

(27)

spectra of points #7-12 (rough surfaces)

III.) Solid samples: rough surfaces

(28)

# Ni(%) P(%) 1

2 3 4 5 6

95,28 95,29 95,26 95,38 95,29 95,25

4,72 4,71 4,74 4,62 4,71 4,75 MW s 95,29

± 0,05 4,71 ± 0,05

# Ni(%) P(%) 7

8 9 10 11 12

95,01 94,72 95,32 94,64 94,64 96,06

4,99 5,28 4,68 5,36 5,36 3,94 MW s 95,06

± 0,55 4,94 ± 0,55

Given value: 4,72 % P

à PhiRhoZ analysis with standards:

Points on

smooth surface Points on

rough surface

III.) Solid samples: rough surfaces

(29)

# Ni(%) P(%) 1

2 3 4 5 6

95,27 95,29 95,33 95,31 95,28 95,30

4,73 4,71 4,67 4,69 4,72 4,70 MW s 95,30

± 0,02 4,70

± 0,02

# Ni(%) P(%) 7

8 9 10 11 12

95,32 95,31 95,31 95,30 95,21 95,35

4,68 4,69 4,69 4,70 4,79 4,65 MW s 95,30

± 0,05 4,70 ± 0,05

à P/B-ZAF analysis with standards:

III.) Solid samples: rough surfaces

Given value: 4,72 % P

Points on

smooth surface Points on

rough surface

(30)

www.bruker-nano.com

Referencer

RELATEREDE DOKUMENTER

Efter sigende blev tyskeren gal i skralden, vist nok mest over at man hos Agfa i Danmark overhovedet ikke havde opdaget, at en af deres stØrste kunder var

Serie: Moderna tyska tänkara A-Z; Symposion bibliotek, s.. Serie: Moderna tyska tänkara A-Z; Symposion

Klik på Advanced / klik på add for at overføre de enkelte søgninger til søgefeltet / klik dernæst på search (husk her skal typisk bruges den boolske operator AND

Maintaining the idea of in some way approximate the Jacobian of the map- ping function, we could employ a gradient based method exploiting nite dierence approximations in each

z Læger, tandlæger og dyrlæger har pligt til at indberette. z ”Formodning”

z On binding to a remote object, the client imports an object proxy from the server.. z Remote references specify server name and path to the object (or to the

x-/y- deflection, measured with image processing sensor Distance.. sensor z-

') Jfr. OPPERMANNS foranstaaende Afhandling: Vrange Bøge i det nord- østlige Sjælland, særlig S.. Jordbunden er leret, Terrainet svagt bølgeformet, undertiden fladt, Højden over