• Ingen resultater fundet

coulometric Karl Fischer titration(O-cKF)

N/A
N/A
Info
Hent
Protected

Academic year: 2022

Del "coulometric Karl Fischer titration(O-cKF)"

Copied!
22
0
0

Indlæser.... (se fuldtekst nu)

Hele teksten

(1)

Chemical water detection – Oven

coulometric Karl Fischer titration (O-cKF)

Rudolf Aro Lauri Jalukse

Ivo Leito

ivo.leito@ut.ee

20.10.2015 SIB64 METefnet DTI, Taastrup 1

(2)

20.10.2015 2

O-cKF Principle and current

status

Samples

Problems

Validation

Oven temperature

Measurement uncertainty

SIB64 METefnet DTI, Taastrup

(3)

20.10.2015 SIB64 METefnet DTI, Taastrup 3

cKF:

Principle

First step:

ROH + SO2 + R'N

[R'NH]SO3R (1) Second step:

[R'NH]SO3R + H2O + I2 + 2R'N

2[R'NH]I + [R'NH]SO4R (2)

Anode reaction:

2 I- - 2 e-

I2 (3) Cathode reaction:

2 H+ + 2 e-

H2

(4)

(4)

20.10.2015 4

O-cKF

SIB64 METefnet DTI, Taastrup

(5)

In Liquids

Well established, well understood

Generally considered the standard method

Low uncertainties

In Solids

Extensively used, but poorly understood

Different types of water

Sample inhomogeneity

Strong matrix effects

Often considered standard method, but work is still needed

Uncertainty estimates generally not reliable Thus the need for:

20.10.2015 SIB64 METefnet DTI, Taastrup 5

cKF:

Status

(6)

20.10.2015 6

• Many samples are too complex to obtain a reliable measured value

• water content instability

• different forms of water

• sample inhomogeneity

• partial decomposition with release of water

• Measured values are not uniformly defined – results are incomparable

• Measurement systems work on different principles, resulting in large differences of measured values

• How to calculate measurement uncertainty?

Problems

SIB64 METefnet DTI, Taastrup

(7)

Coulometric titrator parameters

Polarization current between indicator electrodes

• Threshold potential between the indicator electrodes

• Time interval between measurement points

Titration speed

• End-point criterion

• Relative drift

• Absolute drift

Oven system parameters

Oven temperature

• Carrier gas and its flow rate

20.10.2015 7

Validation

SIB64 METefnet DTI, Taastrup

(8)

20.10.2015

0 500 1000 1500 2000 2500

0 100 200 300 400 500 600 700

T itratio n speed (µg/m in )

Time (s)

Polarization current between indicator electrodes

5 µA

10 µA, recommended 30 µA

SIB64 METefnet DTI, Taastrup 8

(9)

20.10.2015

0 200 400 600 800 1000 1200

0 100 200 300 400 500

T itratio n speed ( µg/m in )

Time (s)

Titration speed

Slow Optimal Fast

SIB64 METefnet DTI, Taastrup 9

(10)

20.10.2015 10

Dependence of wood water content measurement result on

oven temperature

50000 55000 60000 65000 70000 75000 80000 85000 90000 95000

0 50 100 150 200 250 300

Average water content, C(ppm)

Oven Temperature, t(°C)

LoD uses long heating times:

temperatures slightly above 100 °C are OK

cKF uses short heating times:

temperatures slightly above 100 °C are not OK

• Using long heating times in cKF is not practical

SIB64 METefnet DTI, Taastrup

Oven

temperature

(11)

Effect of heating temperature on wood

After heating: 50°C 150°C 200°C 210°C 220°C 230°C 240°C 250°C .

20.10.2015 SIB64 METefnet DTI, Taastrup 11

(12)

50000 55000 60000 65000 70000 75000 80000 85000 90000 95000

0 50 100 150 200 250 300

Average water content, C(ppm)

Oven Temperature, t(°C)

t b t

b a e

e a C

C01

1

2

2

Dependence of wood water content measurement result on oven temperature: the processes

Decomposition Incomplete

water release

Parameter Value

Plateau, C0: 71415

Lower offset, a1: 79943 Lower shape, b1x1000: 34.77 Higher offset, 1/a2: 22.21 Higher shape, b2x1000: 50.92

Least squares fitting:

20.10.2015 SIB64 METefnet DTI, Taastrup 12

(13)

13

69000 69500 70000 70500 71000 71500 72000 72500 73000 73500 74000

50 100 150 200 250

Average water content, C(ppm)

Oven Temperature, t(°C)

t b t

b a e

e a C

C01

1

2

2

Dependence of wood water content measurement result on oven temperature: the processes

Decomposition

Incomplete water release

Actual water content:

C0 = 71415 ppm (7.1 g/100g)

20.10.2015 SIB64 METefnet DTI, Taastrup

(14)

20.10.2015 14

High water con te nt

Sample H2O g/100g

Keratin 1.9 – 2.1 C-8 stationary phase, laboratory conditions 2.0 – 2.3 PSA stationary phase, laboratory conditions 2.3 – 2.4 C-8 stationary phase, hygrostate 4.1 – 4.7 Paper, Logic 300 4.2 – 6.3 Meat bone meal 2 – 5 % Alpha-D-lactose monohydrate, bottled 5.0

Potassium citrate, dried at 70°C 5.6 – 5.7 Potassium citrate, dried at 120°C 5.3 – 5.5 Wood pellet, analyzed at 150°C 6.9 – 7.1 Wood pellet, analyzed at 103°C 6.4 – 7.4 PSA stationary phase, hygrostate 6.1 – 34 Calcium oxalate monohydrate, bottled 12.3 – 12.4

Samples

Low water content is more interesting

and also more problematic!

SIB64 METefnet DTI, Taastrup

Lo w water con te nt

Sample H2O g/100g

Parafilm M, laboratory conditions 0.001 – 0.03 Candle wax, laboratory conditions 0.005 – 0.02 Candle wax, hygrostate 0.01 – 0.04

Parafilm M, hygrostate 0.04 – 0.2 Polymorph (Polycaprolactone) 0.15 – 0.3 MeOH-H2O gravimetric reference solution, ~0.5% 0.5 Czech C-18 stationary phase, laboratory conditions 0.7 – 0.8

Tecophilic SP-60D-60 (Polyurethane) 0.7 – 1.1 1% standard material (CRM) 1.0 ROTH C-18 stationary phase, laboratory conditions 0.9 – 1.2

(15)

15

Example: polymer (polymorph)

20.10.2015 SIB64 METefnet DTI, Taastrup

0 500 1000 1500 2000 2500

0 50 100 150 200 250 300

Av er ag e w ater co n ten t, C (p p m)

Oven Temperature, t (°C)

Parameter Value

Plateau, C0: 1221 Lower offset, a1: 5817 Lower shape, b1x1000: 37.22 Higher offset, 1/a2: 10.39 Higher shape, b2x1000:36.95

(16)

16

Example: polymer (polymorph)

20.10.2015 SIB64 METefnet DTI, Taastrup

(17)

17

Example: meat bone meal

20.10.2015 SIB64 METefnet DTI, Taastrup

0 10000 20000 30000 40000 50000 60000 70000

0 50 100 150 200 250

Average water content, C(mg/kg)

Oven Temperature, t (°C)

Parameter Value

Plateau, C0: 21047 Lower offset, a1: 103885 Lower shape, b1x1000: 39.98 Higher offset, 1/a2: 0.01 Higher shape, b2x1000:22.33

(18)

18

Example: paper

20.10.2015 SIB64 METefnet DTI, Taastrup

40000 50000 60000 70000 80000 90000 100000

0 50 100 150 200 250

A ver ag e w at er co n ten t, C (mg /kg )

Oven Temperature, t (°C)

Parameter Value

Plateau, C0: 56788

Lower offset, a1: 89360 Lower shape, b1x1000: 44.08 Higher offset, 1/a2: 45367560 Higher shape, b2x1000:112.72

(19)

Potential usefulness of the model

Usefulness of the model:

Elucidating the processes

Finding suitable measurement conditions

Finding water content as C

0

from least squares fitting data

As possible first step in investigating new materials

As routine approach for high-accuracy measurements

But:

Not always straightforward to use

Not necessarily universal

t b t

b a e

e a C

C01

1

2

2

20.10.2015 SIB64 METefnet DTI, Taastrup 19

(20)

• The Nordtest approach was applied

• Bias component was estimated with a gravimetric reference solution

• Precision component was estimated using real samples

• Measurement uncertainty estimation was obtained for different measurement

situations

20.10.2015 20

U, k = 2

Preliminary measurement uncertainty

SIB64 METefnet DTI, Taastrup

(21)

20.10.2015 21

Relative expanded uncertainty (k = 2) for real samples, using the oven system

Simple sample Difficult sample

Low content

High content

2.6 %

1.7 %

(5 .. 27 %)

3.0 %

SIB64 METefnet DTI, Taastrup

Preliminary measurement uncertainty

(22)

Thanks to Rudolf and Lauri!

Thank you for your attention!

This work has been supported by the EMRP SIB64 METefnet project

20.10.2015 SIB64 METefnet DTI, Taastrup 22

Referencer

RELATEREDE DOKUMENTER

The purpose of this thesis work is to investigate how dierent database systems can eectively handle the heterogeneous and large amount of data of the Internet of Things on the cloud,

The nine blocks of the Business Model Canvas pertain to the four main areas of a business: customer interface (customer segments, channels, customer relationships), products and

al., 2011, Analysis of the effect of cone-beam geometry and test object configuration on the measurement accuracy of a computed tomography scanner used for dimensional

To ensure real traceability on measurement of surface temperature in order to ensure reproducibility in industrial

Measurement of Diaphragmatic Dysfunction and Phrenic Nerve Palsy in Patients Undergoing Thoracic Surgery for Lung- or Esophageal

Table 3: Optimal expected profits assuming no measurement errors (case 1), the expected profit using the same sorting groups but sort according to measured parameters (case 2), and

 Traditionel usikkerhedsberegning: Evaluation of measurement data — Guide to the expression of uncertainty in measurement (herefter GUM)..  Hvad er en

The analytical work performed comprises mainly measurement data pro- cessing and interpretation. As the main focus is on large-scale propagation, average path loss is