• Ingen resultater fundet

Statistical Design and Analysis of Experiments Part Three

N/A
N/A
Info
Hent
Protected

Academic year: 2022

Del "Statistical Design and Analysis of Experiments Part Three"

Copied!
29
0
0

Indlæser.... (se fuldtekst nu)

Hele teksten

(1)

Statistical Design and Analysis of Experiments Part Three

Lecture notes Fall semester 2007

Henrik Spliid

Informatics and Mathematical Modelling Technical University of Denmark

1

0.1

List of contents, cont.

11.1: General ANOVA models: An example with a random factor 11.3: The ANOVA table and the EMS column

11.4: Construction of the EMS column 11.6: Example like Montgomery 13-2

11.5: Random factors and hierarcial variation example 11.7: Example 13-2 from textbook

11.11: Mixed effect ANOVA (crossed)

11.12: The easy way to EMS-values (important)

2

0.2

12.1: A two-factor nested (hierarchical) design 12.3: From crossed to nested ANOVA computations 12.5: Example 14-1 from textbook

13.1: More nested (hierarchical) models

13.3: Mixed and nested example 14-2 from textbook

14.1: Models with two factors, all possible models and EMS tables 15.1: Split plot designs

15.7: The design randomization illustration 16.1: Repeated measures designs

0.3

16.5: repeated measures model with time effect

16.8 Repeated measures example - two measurements per individual 17.1: Regression analysis, introduction

17.4: Examples of more general regression models 17.6: Multiple linear regression by an example 17.8: The general regression model test - examples 17.12: Successive testing

17.14: The partial F-test

(2)

0.4

18.1: ANOVA and multiple linear regression example 19.1: Analysis of covariance: ANOVA with covariate 19.4: Least squares estimation

19.5: Test and estimation example Supplements

Supplement IV: The easy way to EMS in balanced designs Supplement V: EMS tables for models with three factors

supplement VI: Montgomery’s method for computing EMS-values Supplement VII: Multiple linear regression in general formulation

5

11.1 General ANOVA models

An example with a random factor

A factorial experiment carried out and placed randomly on 3 batches of material se- lected randomly among many possible batches (complete randomization assumed):

Batch pH = 6 pH = 7

1% 2% 3% 1% 2% 3%

I y1y2 y1 y2 y1 y2 y1y2 y1y2 y1 y2 II y1y2 y1 y2 y1 y2 y1y2 y1y2 y1 y2 III y1y2 y1 y2 y1 y2 y1y2 y1y2 y1 y2

Yijkl=µ+pi+cj+pcij+Bk+P Bik+CBjk+P CBijk+Eijkl

etc. Random terms are written with capital letters.

6

11.2

piis a parameter (a number). A deterministic (fixed) factor Bk is a random factor fx: Bk ∈N(0, σB2)

P Bikis a random interaction term fx: P Bik∈N(0, σ2BP) A more reasonable (useful) model:

Yijkl=µ+pi+cj+pcij+Bk+Eijkl

In ANOVA test PCB, CB and PB terms first in order to reduce model to a more interpretable or reasonable model (without interaction between the deterministic factor(s) and the random factor(s)).

If the batches in the example essentially are blocks (restricted randomization) care should be exercised in interpreting the F-tests (see Montgomery p. 123).

For such blocks both physical placement and time sequence, for example, can be randomized.

11.3 The ANOVA table and the EMS column

The analysis of variance table for the above complete model has the following appearance.

Source of Name of SSQ d.f. S2 Expected mean square

variation term = EMS =E{S2}

pH pi 1 S2p 18φp+ 6σ2P B +2σ2P CB+σ2E

concentr. cj 2 S2c 12φc +4σ2CB+ 2σ2P CB+σ2E pc-interaction pcij 2 S2pcpc +2σ2P CB+σ2E Batch Bk 2 S2B 12σ2B+6σ2P B+ 4σ2CB+ 2σ2P CB+σ2E PB-interaction P Bik 2 S2P BP B2 +2σ2P CB+σ2E CB-interaction CBjk 4 S2CB2CB+ 2σ2P CB+σ2E PCB-interaction P CBijk 4 S2P CB2P CB+σ2E

Error Eijkl 18 S2E σ2E

Total 35

The EMS values determine how tests and component of variance estimates are

(3)

11.4 The EMS-column, balanced design, ’unrestricted model’ method

Yijkl=µ+pi+cj+pcij+Bk+P Bik+CBjk+P CBijk+Eijkl

Where do the various components appear EMS: φp φc φpc σB2 σ2P B σCB2 σP CB2 σE2

pi + + + +

cj + + + +

pcij + + +

Bk + + + + +

P Bik + + +

CBjk + + +

P CBijk + +

Error +

Rule: Random terms of higher order which include the term itselfcontribute to the EMS for a term (σ2CB contribute to the EMS forcandBand itself, see the

+ ’s in the table).

9

11.5 The coefficient for a variance component is the number of observations per ’level’

of the corresponding model term, for example:

pi: 18 observations per level (ione pH level in the data table)

P Bik : 6 observations per level (one ik-combination = one pH×Batch combina- tion)

What are the coefficients

EMS: φp φc φpc σ2B σP B2 σCB2 σP CB2 σE2

pi 18 6 2 1

cj 12 4 2 1

pcij 6 2 1

Bk 12 6 4 2 1

P Bik 6 2 1

CBjk 4 2 1

P CBijk 2 1

Error 1

Good small examples: see slides 14.1-14.5 .

10

11.6 Example like 13-2 in Montgomery

Test Operator

item 1=Hansen 2=Jensen 3=Ulrich 1 y1y2 y1y2 y1y2

: : : :

: : : :

20 y1y2 y1y2 y1y2

Yijk=µ+Ti+Oj+T Oij+Eijk

The model has 4 components of variance

TiN(0, σT2) ,OjN(0, σ2O) ,T OijN(0, σT O2 ) ,EijkN(0, σ2E)

Var{Y}=σ2T+σ2O+σT O2 +σE2 The idea of the experiment is to assess these variances.

11.7 The ANOVA strategy: The EMS column

ANOVA table for example 13-2

Source SSQ d.f. s2 E{s2}

Test items Ti 1185.43 19 63.39 σ2E+ 2σT O2 + 6σ2T Operators Oj 2.62 2 1.31 σ2E+ 2σT O2 + 40σ2O TO-interactionT Oij 27.05 38 0.71 σ2E+ 2σT O2 Residual Eijk 59.50 60 0.992 σ2E

Total 1274.59 119

How should we test the model. What does the E{s2}column tell us? Which terms first? How is theT Oij-term tested?

How are the main effectsTiandOjtested dependent on whether theT Oij-term is significant or not?

Can we estimateσ2E(how?) andσT O2 (how?).

How areσT2 andσ2Oestimated dependent on whether theT Oij-term is significant or not?

(4)

11.8 The ANOVA

1: TestT Oij : F(38,60) = 0.71/0.992 = 0.71 is not significant (<1)

2: If σOT2 clearly insignificant, then reduce the model and pool variances (look at EMS column to see how)

ANOVA table for example 13-2, reduced model

Source SSQ d.f. s2 E{s2} F-value Test items 1185.43 19 63.39 σ2E+ 6σT2 72.0 Operators 2.62 2 1.31 σ2E+ 40σO2 1.49 Residual 86.55 98 0.88 σE2

Total 1274.59 119

13

11.9 3: TheOj term is not significant. However, it could still be interesting to estimate all variance components, at this point:

cσE2 =s2E= 0.88 = 0.942

σc2T = (s2T −s2E)/6 = (63.390.88)/6 = 10.42 = 3.232

σc2O= (s2O−s2E)/40 = (1.310.88)/40 = 0.011 = 0.102 Conclusion

σ2O'0 =⇒Yijk−→Yik=µ+Ti+Eik Revised estimates:

cσE2 = SSQO+SSQE

2 + 98 = 2.62 + 86.55

2 + 98 = 0.89 = 0.942

cσT2 = (s2TcσE2)/6 = (63.390.89)/6 = 10.42 = 3.232

14

11.10 Mixed effect ANOVA

ANOVA table for mixed model

Source SSQ d.f. s2 E{s2}

Test items (Ti) σE2 + 2σ2T C+ 6σ2T Coatings (cj) σE2 + 2σ2T C+ 40φc

TC-interaction (T Cij) σE2 + 2σ2T C Residual (Eijk) σE2

Total

Yijk=µ+Ti+cj+T Cij+Eijk

cj: unknown constants: {c1, . . . , ca}(withalevels). Defineφc=Paj=1c2j/(a−1).

T Cij, are unrestricted random variables as in the ’Unrestricted Mixed Model’ de- scribed in Montgomery at page 498 and 504 (as used in SAS fx).

Notation : capital lettersrandom terms, small lettersdeterministic terms.

11.11 Random factors and hierarchical variation example

1 2 3

1 2 3

1 2 3

Area I

Area II

Area III

Pollution at 3 areas each with 3 sites

Variation between areas and between sites within areas.

Y = Constant + Area + Site(Area) + Uncertainty(Area,Site)

The variation between ’Areas’ is a random variation (there can be many ’Areas’).

The effect of Area is calledAiwritten in capital letters indicating a random variable.

(5)

11.12 The variation between ’Sites’ is a random variation within ’Areas’ (indicated by parentheses as Sites(Areas))

The total variation of Y is composed of the variation from ’Area’, ’Site(Area)’ and the measurement ’Uncertainty’ within (Area,Site)

The design is a hierarcial components of variance design : Yijk=µ+Ai+S(A)j(i)+U(AS)k(ij)

sometimes only, when it is obvious thatU(AS)k(ij)is the error term Yijk=µ+Ai+S(A)j(i)+Ek(ij)

Assumptions: Ai∈N(0, σA2) ,S(A)j(i)∈N(0, σS(A)2 ),Ek(ij)∈N(0, σ2E).

17

12.1 All possible structures for three factors

Type I

B

A

C AxB AxC BxC

Type II

A

B

C

B(A) C(AB)

Type III

B

A

C

AxB C(AB)

Type VI

BxC B(A) C(A) A

B

C

Type V

A1 A

2

B1 B2 B3

1 2 3 4 1 2 3 4

C

AxB BxC C(A)

18

12.2 General notation for models with many factors

Factors are a/A, b/B and c/C etc. If the factor is fixed useai,bj orcketc. If it is random useAi,Bj orCk etc.

An interaction between a fixed and a random factor, fx betweenaiandBjis random and is calledABij.

A factorCk nested within a fixed factorbj is calledC(b)k(j). A factorCk nested within a random factorBj is calledC(B)k(j). A nested factor is practically always random.

The interaction betweenaiandC(b)k(j) is calledAC(b)ik(j)and is random.

The interaction betweenaiandC(B)k(j) is calledAC(B)ik(j)and is random

12.3 Indices are i, j and k while ` denotes repetition no. They can take the values i={1...a},j={1...b},k={1...c}and`={1...r}.

The residual is denotedE`(ijk)and the index`runs within the(ijk)combinations.

EMS tables for all (relevant) three factor models are given from slide Supplement V.1. The various models are organized as types I, II, III, IV and V corresponding to the structures shown on slide 12.1.

All EMS values correspond the ’Alternate Mixed Model’, see page 526, where interactions are modeled as unrestricted random variables.

(6)

12.4

Note: In some cases there are no direct tests for all terms in the model. For example in the model V.4 (slide 19.12) there is no direct test for Ai. If, in this model, both ABij and C(A)k(i) are clearly significant, the approximate F-test (p 505) could be considered.

If, for example,ABij is not significant, reduce the model and pool theABij SSQ with theBC(A)jk(i) SSQ and test theAiterm against theC(A)k(i)term.

In general, do the testing ’bottom up’, and in many cases the EMS structure can be simplified and good tests can be constructed.

The approximate F-test is not generally recommendable, since it often has poor power.

21

12.5 A nested (hierarchical) design

Plant A Plant B Plant C

Batch

Rep: E

1 2 3 1 2 3 1 2 3

1 21 21 21 21 21 21 21 21 2

Nested design with three batches per plant and two repetitions per batch

Yijk=µ+Pi+B(P)j(i)+E(P B)k(ij)

22

12.6 We often write the error term shorter:

Yijk=µ+Pi+B(P)j(i)+Ek(ij)

Both plants and batches are random variables in this model Another possibility is:

Yijk=µ+pi+B(p)j(i)+Ek(ij)

where the plants are deterministic (fixed). Depends on how plants are selected (explain)

12.7 From crossed to nested ANOVA computations

Model: Y =µ+A+B(A) +C(AB) +E(ABC)

A −→ A = A

B

AB −→ B(A) = B + AB C

AC BC

ABC −→ C(AB) = C + AC + BC + ABC E

AE BE ABE CE ACE BCE

ABCE−→ E = E(ABC) = E + AE + . . . + ABCE

Applies to SSQ’s and d.f.’s

(7)

12.8 From crossed to nested ANOVA computations

Model: Y =µ+A+B+AB+C(A) +BC(A) +E(ABC)

A −→ A = A

B −→ B = B

AB −→ AB = AB C

AC −→ C(A) = C + AC BC

ABC −→ BC(A) = BC + BCA E

AE BE ABE CE ACE BCE

ABCE−→ E = E(ABC) = E + AE + . . . + ABCE

25

12.9 Example 14-1

Plant Aa1 Plant Ba2 Plant Ca3

batches batches batches

1 2 3 4 1 2 3 4 1 2 3 4

94 91 91 94 94 93 92 93 95 91 94 96 92 90 93 97 91 97 93 96 97 93 92 95 93 89 94 93 90 95 91 95 93 95 95 94 279 270 278 284 275 285 276 284 285 279 281 285

1111 1120 1130

SSQa=11112+ 11202+ 11302

12 33612

36 = 15.06

SSQB(a)=2792+ 2702+. . .+ 2852

3 11112+ 11202+ 11302

12 = 69.92

fa= 31 = 2, andfB(a)= 3(41) = 9

26

12.10

Computational relation : B(a) = B + BA ( or B(a) = B + AB )

Crossed computation: Nested computation:

Term SSQ d.f. Term SSQ d.f

a 15.06 3-1 a 15.06 3-1

B 25.64 4-1

AB 44.28 (3-1)(4-1) B(a) 69.92 3(4-1) Residual 63.33 12(3-1) Residual 63.33 12(3-1) Total 148.31 35 Total 148.31 35

Two more examples: (factors organized A, B, C, D) 1) : CD(aB) = CD + ACD + BCD + ABCD

2) : B(aCD) = B + AB + BC + ABC + BD + ABD + BCD + ABCD

12.11 Analysis of variance - detailed

Yijk=µ+ai+B(a)j(i)+Ek(ij)

Source SSQ d.f. s2 EMS

Plants 15.06 2 7.53 σ2E+ 3σB(a)2 + 12φa

Batches(plants) 69.92 9 7.77 σ2E+ 3σB(a)2 Residual 63.33 24 2.64 σ2E Total 148.31 35

Test batches : Fbatches= 7.77/2.64 = 2.94∼F(9,24) Variation between batches significant usingα= 0.05.

(8)

12.12

F(9,24)

F(9,24) 0.05 = 2.30

2.94

Test plants : Fplants= 7.53/7.77 = 0.97∼F(2,9)

SinceF(2,9)0.05= 4.26>0.97plants are not significantly different Reduced model, write fx:

Yijk=µ+Bij+Ek(ij)

29

12.13 Conclusion for example 14-1

Source SSQ d.f. s2 EMS 15.06 2

69.92 9

Batches 84.98 11 7.73 σ2E+ 3σB2 Residual 63.33 24 2.64 σ2E Total 148.31 35

Estimation:

Level: µc= 3361/36 = 93.4 σc2E= 2.64 = 1.632

σc2B= (7.732.64)/3 = 1.70 = 1.302 Model again : Y =µ+B+E

Var{Y}=σ2B+σE2 '2.64 + 1.70 = 2.082

30

13.1 More nested (hierarchical) models

Plant A (a1) Plant B (a2) Plant C (a3)

Batches I II I II I II

Parts 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 Data y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y

For each plant two batches are selected. From each batch three parts are formed (selected), and on each part two measurements are performed.

Mathematical model (for fixed plants∼ai) :

Yijk`=µ+ai+B(a)j(i)+P(aB)k(ij)+E`(ijk)

13.2 In the design, essentially, 3×2 = 6 different batches are used and 3×2×3 = 18 different parts.

a1 a2 a3 Plants

Batches

Parts

Measure−

ments

(9)

13.3 Mixed model, example 14-2 p. 536

Layout I II

Operator 1 2 3 4 1 2 3 4

KKA EMB AHJ HS MK PBB HM HR

Method 1 y y y y y y y y

y y y y y y y y

Method 2 y y y y y y y y

y y y y y y y y

Method 3 y y y y y y y y

y y y y y y y y

Eight different operators (indicated by their initials) participated.

The factor ’Operator’ is random and nested within ’Layout’.

33

13.4

Design in principle Layout I Layout II

Operator Method 1 Method 2 Method 3

1 2 3 4 1 2 3 4

Yijkν=µ+mi+lj+mlij+O(l)k(j)+M O(l)ik(j)+Eν(ijk) Note: Totally 8 different operators participated, 4 for each layout.

34

13.5 ANOVA table and expected mean squares computation

Source SSQ d.f s2 E{s2}

Methods (m) 82.80 31 41.4 see Layouts (l) 4.08 21 4.08 below Interaction (m×l) 19.04 2 9.52 Operators (O(l)) 71.91 6 11.99 Interaction (m×O(l)) 65.84 12 5.49 Residual E 56.00 24 2.33

Total 299.67 481

Model 3 2 4 2 Expected mean squares term i j k ν φm φl φml σO(l)2 σM O(l)2 σ2E

mi 0 2 4 2 16 2 1

lj 3 0 4 2 24 6 2 1

mlij 0 0 4 2 8 2 1

O(l)k(j) 3 1 1 2 6 2 1

M O(l)ik(j) 1 1 1 2 2 1

Eν(ijk) 1 1 1 1 1

13.6 The first test is:

FM O(l)= 5.49/2.33 = 2.36∼F(12,24)

F(12,24)0.05= 2.18<2.36 =⇒M O(l) term significant (in principle) Remaining tests can then be based ons2M O(l) with 12 degrees of freedom

The remaining tests

FO(l)= 11.99/5.49 = 2.18 < F(6,12)0.05= 3.00

It can be discussed whether theO(l)-term should be removed from model.

In principle

Fml = 9.52/5.49 = 1.73< F(2,12)0.05= 3.89 Theml-term is not significant

Test of layouts : Fl=s2l/s2O(l)= 4.08/11.99 = 0.34<< F(1,6)0.05= 5.99

(10)

13.7 Alternatively:

RemoveO(l) from model and compute

s2M O(l)new= (65.84 + 71.91)/(12 + 6) = 7.65, with d.f.= 12 + 6 = 18and then Fml= 9.52/7.65 = 1.24< F(2,18)0.05= 3.55

Fl= 4.08/7.65 = 0.53<< F(1,18)0.05= 8.29

Same conclusion : ml-interaction andl-effect not significant The layouts are probably not different !

Test of methods

Directly : Fm=s2m/s2M O(l)= 7.54∼F(2,12)

Alternatively : Fm=s2m/s2M O(l)−new= 5.41∼F(2,18) Both cases result in significance

37

13.8 Conclusion: Layouts are not of importance, but methods and operators are:

Yijkν=µ+mi+Ok+M Oik+Eν(ik)

cσE2 =s2E= 2.33 = 1.532

cσM O2 = (s2M O−s2E)/2 =5.49−2.332 = 1.58 = 1.262

cσO2 = (s2O−s2M O)/6 =11.99−5.496 = 1.08 = 1.042 µc=Y....= 1252/48 = 26.08

md1=Y1...−Y....= 404/1626.08 =0.83 md2=Y2...−Y....= 447/1626.08 = +1.86 md3=Y3...−Y....= 401/1626.08 =1.02

Significant differences between methods found. The best (fastest assembly time) is no. 3, with estimated mean26.081.02 = 25.06. Three (or two) components of variance identified.

38

14.1 Model with two crossed factors, both fixed

Temperature Two crossed factors Concentr. 15oC 25oC 35oC both fixed

1% y y y y y y 2% y y y y y y

Yijk=µ+ci+tj+ctij+Ek(ij)

Model a b r EMS In the

term i j k φc φt φct σE2 example

ci 0 b r br=6 1 a=2

tj a 0 r ar=4 1 b=3

ctij 0 0 r r=2 1 r=2

Ek(ij) 1 1 1 1

The table also correspond to the EMS-method described slide 19.1.

14.2 Two random factors crossed

Operator Two crossed factors Batch Hans John Curt both random Batch I y y y y y y

Batch II y y y y y y

Yijk=µ+Bi+Oj+BOij+Ek(ij)

Model a b r EMS In the

term i j k σ2B σO2 σBO2 σ2E example

Bi 1 b r br=6 r=2 1 a=2

Oj a 1 r ar=4 r=2 1 b=3

BOij 1 1 r r=2 1 r=2

Ek(ij) 1 1 1 1

(11)

14.3 Two factors, one fixed and one random

Operator Two crossed factors Method Joan Anna Miriam one fixed

m1 y y y y y y one random m2 y y y y y y

m3 y y y y y y

Yijk=µ+mi+Oj+M Oij+Ek(ij)

Model a b r EMS In the

term i j k φm σ2O σ2M O σE2 example

mi 0 b r br=6 r=2 1 a=3

Oj a 1 r ar=6 r=2 1 b=3

M Oij 1 1 r r=2 1 r=2

Ek(ij) 1 1 1 1

41

14.4 Two factors, one fixed and one nested and random

Rule: A nested factor will in practice always be random

Animals Two factors, Gender 1 2 3 one fixed,

Males y y y y y y one random and Females y y y y y y nested

Yijk=µ+gi+A(g)j(i)+Ek(ij)

Model a b r EMS In the

term i j k φg σA(g)2 σ2E example gi 0 b r br=6 r=2 1 a=2 A(g)j(i) 1 1 r r=2 1 b=3

Ek(ij) 1 1 1 1 r=2

42

14.5 Two random factors, one nested

Animals Two factors, Litter 1 2 3 one nested,

L1 y y y y y y y y y both random L2 y y y y y y y y y

L3 y y y y y y y y y L4 y y y y y y y y y

Yijk=µ+Li+A(L)j(i)+Ek(ij)

Model a b r EMS In the

term i j k σL2 σA(L)2 σE2 example Li 0 b r br=9 r=3 1 a=4 A(L)j(i) 1 1 r r=3 1 b=3

Ek(ij) 1 1 1 1 r=3

For each litter three animals are considered and three measurements are made on each animal. Thus totally 12 animals participated.

15.1 Split plot designs

Example: Treatments at different temperatures and using different lengths of times of treatment.

Factorial design Temperature 20oC 25oC 30oC 35oC 5 min 217 158 229 223

188 126 160 201 162 122 167 182 10 min 233 138 186 227 201 130 170 181 170 185 181 201 15 min 175 152 155 156 195 147 161 172 213 180 182 199

(12)

15.2

Naive model : Yijk=µ+ti+mj+tmij+Ek(ij)

Source SSQ d.f. s2 EMS Temperatures 12494 3 4165 σ2E+ 9φt Minutes 566 2 283 σ2E+ 12φm Interaction 2601 6 434 σ2E+ 3φtm

Residual 13670 24 570 σ2E Total 29331 35

45

15.3 A question of randomization

How should the experiment be carried out ideally. The following shows a random- ization scheme:

Complete randomization 20oC 25oC 30oC 35oC

5 min 25 3 24 26

7 30 2 10

12 4 34 11

10 min 13 14 15 8

6 1 20 32

22 21 36 23

15 min 17 16 27 35

5 31 29 9

18 28 33 19

The table shows the order in which the measurements are performed using complete randomization

Is it thinkable that this is how it was carried out? - No, because it would take a very long time to do so.

How would it often be carried out in practice instead?

46

15.4 A wrong randomization scheme

Carry out one temperature at a time. Only randomization within temperatures:

No randomization between temperatures

20oC 25oC 30oC 35oC

5 min 18 1 22 31

14 9 27 33

13 2 23 32

10 min 10 4 19 34

16 8 24 30

17 5 26 29

15 min 11 3 20 36

12 7 21 35

15 6 25 28

The 9 measurements at 25oC are carried out first, then the 9 measurements at 20oC, then 30oC and finally 35oC.

15.5

Since all measurements at one temperature level are carried out together one tem- perature level is also a block!

Yijk =µ+ti+Bi(blocki) +mj+tmij+Ek(ij)

tiandBiare confounded. The temperature effect cannot be estimated free from the blocking or tested.

(13)

15.6 The split plot design

Use three rounds and carry out each temperature at a time. Randomize minutes within temperatures:

Round Minutes 20oC 25oC 30oC 35oC I

5 min 10 min 15 min

6 4 5

1 2 3

7 9 8

10 11 12 II

5 min 10 min 15 min

14 13 15

22 23 24

21 19 20

17 18 16 III

5 min 10 min 15 min

30 29 28

25 27 26

33 32 31

34 36 35

49

15.7 The three measurements no. 2527

26

, for example, now form a block: A whole plot with 3 split plots.

R3 R2 R1

whole plots split plots replicates

Randomization restrictions

50

15.8 The split plot model

Data example for a split plot experiment Round Minutes 20oC 25oC 30oC 35oC

I

5 min 10 min 15 min

217 233 175

158 138 152

217 233 175

217 233 175 II

5 min 10 min 15 min

188 201 195

126 130 147

160 170 161

201 181 172 III

5 min 10 min 15 min

162 170 213

122 185 180

167 181 182

182 201 199

15.9

Yijk`=µ+Ri+tj+RTij+mk+RMik+tmjk+RT Mijk+E`(ijk)

RTij is called the whole plot error RT Mijk is called the split plot error

RTij=R×t-interaction + block-effect(i, j)is a random variable RT Mijk=R×t×m-interaction + split-plot-effect(i, j, k) is also a random variable

(14)

15.10 ANOVA of split plot experiment

Model Expected mean squares term σ2R φt σ2RT φm σ2RM φtm σRT M2 σE2

Ri 12 3 4 1 1

tj 9 3 1 1

RTij 3 1 1

mk 12 4 1 1

RMik 4 1 1

tmjk 3 1 1

RT Mijk 1 1

E`(ijk) 1

53

15.11

Source SSQ d.f. s2 F-test Ri 1963 2 982

tj 12494 3 4165 Ft= 4165/296F(3,6) RTij 1774 6 296

mk 566 2 283 Fm= 283/1755F(2,4) RMik 7021 4 1755

tmjk 2601 6 434 Ftm= 434/243F(6,12) RT Mijk 2912 12 243

E`(ijk) 0 0

Total 29331 35

It is problematic, that theRMik term is so large. It would be reasonable if it was small to test themk term against the split plot error termRT Mijk.

Under all circumstances, the temperature (tj) is significant, but the time (mk) is not.

54

16.1 Repeated measures design

Characteristics: Several treatments applied to the same “individual”:

Treat- Individual number ment 1 2 ... ... n

1 y11 y12 y1n

2 y21 y22 y2n

... ... ... ... ... ...

... ... ... ... ... ...

a ya1 ya2 yan

The design is not completely randomized. Randomization can sometimes be made within individuals (persons), sometimes not (time). Measurements on the same individual are correlated - the time sequence may be important.

16.2 Partition of sums of squares in the simplest case

Yijk=µ+ai+Pj+APij+Ek(ij)

Pn

j=1a(Y.j−Y..)2= Variation between individuals

Pa i=1

Pn

j=1(Yij−Y.j)2 = variation within individuals

=Pai=1n(Yi.−Y..)2+Pai=1Pnj=1(Yij−Yi.−Y.j+Y..)2 SSQT reatments+SSQU ncertainty

(15)

16.3 ANOVA technique if correlation within individuals is neglected

Model EMS

term φa σP2 σ2AP σ2E

ai n 1 1

Pj a 1 1

APij 1 1

Ek(ij) 1

For k = 1 there is no estimate forσ2E(no degrees of freedom).

E{s2AP}=σAP2 +σ2E(confounding ofAPij andEk(ij))

The design can analyzed as a two-way ANOVA with one fixed and one random factor if the correlation within individuals is small (not too many treatments per individual).

57

16.4 A more realistic repeated measures design

Often used in the development of drugs

Treatment Indivi- Time group dual 1 2 3 ... ... ts

No 1 y y y ... ... y

dose 2 y y y ... ... y (vehicle) 3 y y y ... ... y Low 4 y y y ... ... y dose 5 y y y ... ... y 6 y y y ... ... y Medium 7 y y y ... ... y dose 8 y y y ... ... y 9 y y y ... ... y High 10 y y y ... ... y dose 11 y y y ... ... y 12 y y y ... ... y

0 1 2 3 t

s

Response for one individual

58

16.5 Repeated measures model with time effect

Yijk`=µ+ai+P(a)j(i)+tk+atik+P T(a)jk(i)+E`(ijk)

Model EMS

term φa σ2P(a) φt φat σP T2 (a) σ2E

ai = treatments pt t 1 1

P(a)j(i)= individuals t 1 1

tk = time ap 1 1

atik p 1 1

P T(a)jk(i) 1 1

E`(ijk) 1

No estimate for σE2 (no degrees of freedom)

The model structure corresponds to a typeV.1model.

The time point ’0’ is special (no effect start value)

A special problem is time×treatment interaction as illustrated below A model for the (auto-) correlation within individuals is generally needed

16.6 Time Effect profiles

0 1 2 3 t

s Drug I

Drug II

Parallel effect profiles for two drugs

0 1 2 3 t

s Drug I

Drug II

Identical effects for two drugs

Referencer

RELATEREDE DOKUMENTER

Den danske PeFC-standard kræver ikke alene, at skovdriften skal være bæredygtig. Den kræver desuden, at skovdriften skal være naturnær. Hvorfor man i Danmark har skærpet kravene

Skovstatistikken viser dog også, at der bliver mere skov i Danmark, og at mange af de nye skove har en stor andel af løvtræ. Disse ændringer skyldes den fortsatte støtte

Børn mellem 11 og 15 år bør røre sig mindst 1 time om dagen. klasse fra Toftegårdssko- len – incl. Foto: Skov- og Naturstyrelsen, Fyn... fremover sætte fokus på

Desværre ved vi ikke nok om de truede dyr og planters krav til leve- steder. Mange naturbeskyttere vil derfor helst sikre alt muligt mellem himmel og jord for ikke at løbe risi-

&amp; Landskab har nedsat en fælles arbejdsgruppe, som netop har ud- arbejdet en handlingsplan for at styrke skovprofilen i uddannelsen (se Skoven 12/11). Jeg oplever heldigvis

The contribution of this paper is the development of two different models (a mathematical model and one based on column generation) and an exact solution approach for a

Figure 12.a 1-parametric regression between the 10 minute mean wind speed measurements from the Windcube at 244m and the cup anemometer at 244m. Figure 12.c Deviation at 244m

Udenrigsministeriet blev i forbindelse med et review opmærksom på, at IMR havde anvendt midler fra rammebevillingen i forbindelse med løsningen af de to kommercielle kontrakter