• Ingen resultater fundet

Denmark’s Climate and Energy Outlook

N/A
N/A
Info
Hent
Protected

Academic year: 2022

Del "Denmark’s Climate and Energy Outlook"

Copied!
66
0
0

Indlæser.... (se fuldtekst nu)

Hele teksten

(1)

Danish Energy Agency

Denmark’s Climate and Energy Outlook

2020 Baseline Scenario

Projection Towards 2030

With Existing Measures

(Frozen Policy)

(2)

Denma k Clima e and Ene g O look 2020

(In Dani h: Ba i f em k i ning 2020 Danma k Klima- og Ene gif em k i ning) P b i hed J e 2020 (E g i h e i b i hed A g 2020) b he Da i h E e g Age c , Ca e Nieb h Gade 43, 1577 V, De a

Te : +45 33 92 67 00, E- ai : e @e .d , Web i e h :// .e .d / De ig a d d c i : The Da i h E e g Age c

Ph : La Sch id / Sch id Ph g a h A

(3)
(4)

Page

Con en

1 We c e De a C i a e a d E e g O 2020 ... 5

1.1 DCEO20 F c e E i i f G ee h e Ga e ... 5

1.2 Wha A e G ee h e Ga e , a d H A e E i i Ca c a ed? ... 6

1.3 H Ha DCEO20 Bee P e a ed? ... 8

1.4 Se i i i ie a d U ce ai ie ... 10

1.5 Bac g d Fig e a d Ma e ia O i e ... 10

2 The O e a Pic e ... 11

3 E e g U i i ie a d S ace Hea i g ... 14

3.1 E e g i i ie ... 15

3.1.1 C a Wi Be Pha ed O Bef e 2030 ... 15

3.1.2 Re e ab e E e g Wi Ta e O e E ec ici S ... 16

3.1.3 M e E ec ifica i f Di ic Hea i g ... 18

3.1.4 M e Bi ga E e M e G ee Ga i he G id ... 19

3.2 S ace Hea i g - Fa i g C i f Oi a d Ga ... 20

3.3 Se i i i ie ... 21

4 I d a d Se ice ... 22

4.1 C i ed C i f Oi , C a a d Ga ... 23

4.2 T e d i Te e a e P ce Hea ... 23

4.3 Hea P f Medi -Te e a e P ce Hea Wi Be i De a d ... 25

4.4 CO2 I e i F he Red ced, B Le S F 2025 ... 26

4.5 I d ia P ce e - Fa i g E i i O e a ... 27

4.6 O e a i a C i i he N h Sea - Pa f he Oi a d Ga I d .. 28

4.7 Se i i i ie ... 30

5 Wa e a d Wa e a e ... 31

5.1 Wa e I ci e a i - he La La ge E i e i Di ic Hea i g ... 31

5.2 La dfi , Bi gica Wa e T ea e a d Wa e a e ... 32

5.3 Se i i i ie ... 34

6 T a ... 35

6.1 I c ea ed R ad T a De a d - Oi C i Dec i e Af e 2025 ... 36

6.2 E ec ifica i f R ad T a Ca e Fa i E i i af e 2025 ... 37

6.3 C i f E ec ici a d Re e ab e I c ea e ... 38

6.4 Se i i i ie ... 39

7 Ag ic e, F e a d O he La d U e... 40

(5)

Page

7.1 E i i F Ag ic e Wi Be S ab e 2030 ... 41

7.2 The Ca b P i F e a d O he La d Cha ge F Yea Yea ... 43

7.3 The A ea f F e Ha G a d Acc f a E e ia Ca b P ... 44

7.4 E i i F O he La d A ea S e f D ai age a d S i T ea e ... 46

7.5 Se i i i ie ... 47

8 E e g Ba a ce ... 49

8.1 G E e g C i I S ead , b he Ri e ... 49

8.2 The Re e ab e Sha e I E ec ed Reach 55% i 2030 ... 50

8.3 E ec ici C i Wi I c ea e ... 51

8.4 Da i h E ec ici Ba a ce Li e Ti T a d Ne E ... 54

8.5 Wha Wi Be he Effec f Ne E f E ec ici i 2030? ... 54

G a ... 55

Abb e ia i ... 58

Mea e A ead I c ded i he Ca c a i ... 59

A i Ag ic e, F e a d O he La d U e ... 62

Refe e ce ... 63

(6)

Page

1 Welcome o Denma k Clima e and Ene g O look 2020

Denmark s Climate and Energy Outlook (DCEO20) is a technical assessment of how Danish greenhouse gas emissions, and Danish energy consumption and energy

production, is expected to evolve over the period up to 2030 based on the assumption of a frozen-policy scenario. A frozen-policy scenario describes a scenario with existing measures, i.e. in which no new policies are introduced.

DCEO20 is therefore the Danish Energy Agency's best guess at what the future will be like with regard to climate and energy-related aspects if no new measures are decided in the climate and energy area other than those adopted by the Danish Parliament as of 1 May 2020, or those that the Parliament at the time is expected to adopt as a

consequence of binding agreements. This means that the impacts of the climate action plan for a green waste sector adopted on 16 June 2020 (The Danish Government et al, 2020a) as well as the agreement of 22 June on climate measures in industry and energy sectors (The Danish Government et al, 2020b) have not been included in DCEO20.

The methodology behind the projections in DCEO20 is well-defined and is based primarily on technological costs and on the rational options and financial viability requirements of players in given markets. Large, existing projects are also included if there is an approved application or a funding commitment, for example for the conversion of a power plant from coal to biomass. The assumed 'policy freeze' pertains to climate and energy policy only and does not imply that development in general will come to a halt. For example, economic growth and demographic trends are not part of the freeze.

Figure 1 illustrates the temporal scope of the most important political measures included in DCEO20.

DCEO20 thus serves to examine to what extent Denmark will meet it s climate and energy targets and commitments within the framework of current regulation. Denmark s Climate and Energy Outlook can be used as a technical reference when planning new measures in the climate and energy area, and when assessing the impact of such measures.

1.1 DCEO20 Foc e on Emi ion of G eenho e Ga e

Wi h he bi f a C i a e Ac (The Da i h G e e , 2020) ag eed i he Da i h Pa ia a i J e 2020 a d he Dece be 2019 ag ee e behi d he bi (The Da i h G e e e a , 2019), De a ha decided ed ce e i i f g ee h e ga e b 70% i 2030 c a ed i h 1990 e i i . Acc di g he C i a e Ac , a

e g ee h e ga ed c i a ge f he ea 2025 ha be ag eed.

The C i a e Ac e ab i he a a a c c e e e g i g f - he he c i a e eff a e i g he f fi e f he a ge i he C i a e Ac .

Acc di g he C i a e Ac a a c c e, f 2021 De a C i a e a d E e g O e i e ie he g e ade a d eachi g he c i a e a ge each A i . De a C i a e a d E e g O e i he ef e be a f hi e c c e f 2021.

(7)

Page

DCEO20 f c e he 70% g ee h e ga ed c i a ge f 2030 i he C i a e Ac a d e e he a f a d ec i f De a g ee h e ga e i i i 2025 a d 2030 i acc da ce i h he UN' e h d gie .

The DCEO20 e e De a e i i ce a d ide de ai ed i igh i he ec ed de e e f De a e i i 2030 i he ab e ce f a e ea e .

Fig e 1: Tem o al co e of he mo im o an clima e and ene g mea e ha al ead ha e an im ac on he ojec ion. Ligh bl e a ea indica e ha mea e a e a of he 2018 Ene g Ag eemen . The eg la ion i de c ibed in mo e de ail in A endi 3.

1.2 Wha A e G eenho e Ga e , and Ho A e Emi ion Calc la ed?

Ca c a i f g ee h e ga e i i i De a C i a e a d E e g O e f i e a i a a da d igi a i g f he U i ed Na i F a e

C e i C i a e Cha ge. P a he Da i h C i a e Ac , he ca c a i f e i i i c ec i i h a e i g he a f a ge f fi e a e ba ed he

a e e h d g .1

1 I ac ice, he Da i h E e g Age c e e a ba i ha a f ca c a i g e i i b h acc di g he UN ca c a i e h d g a d he a i a ca c a i e h d g ed i Da i h a i ic , f e a e. The diffe e ce be ee he e h d gie c ce , f e a e, i e a i a ai a , b e i g, G ee a d a d he Fae e I a d , a d ea e c af . The Da i h E e g Age c a ca c a e

he c i f bi a .

Impor an ini ia i es ha alread impac projec ions '1 '20 '21 '22 '2 '2 '2 '2 '2 '2 '2 ' 0 Revised electricity price supplement for new biomass and biogas

Framework conditions for new offshore wind deployment Technology-neutral calls for tenders

Relaxation of electric heating taxes Relaxation of the overall electricity tax Repeal of Annex 1 of the Electricity Tax Act

Repeal of the production requirements in small areas Energy saving efforts by energy companies

Start-up aid: heat pumps, solar heating, etc. in distr. heat.

Promotion of energy savings The PSO tariff

Temporary relaxation of the registration tax on electric vehicles Changes to the Sustainable Biofuels Act

Elements from climate initiatives, cf. the 201 Finance Act Revised electricity price supplement for new biomass and biogas Regulation of ammonia emissions in agriculture

General regulation of nitrogen in agriculture Establishment of catch crops in agriculture

Set-aside of organogenic soils, wetlands (e.g. 2020 Finance Act) The Ecodesign Directive

The Energy Labelling Directive

Emission performance standards for vehicles Building regulations

Existing subsidies and taxes

Production-independent support for electricity production Expired Electricity price supplement, onshore wind and biomass, plus biogas Expired

(8)

Page

DCEO20 e e he ca c a i f g ee h e ga e i i acc di g he f i g ec a b ea d :

E e g i i ie a d ace hea i g (Cha e 3).

I d a d e ice (Cha e 4) Wa e a d a e a e (Cha e 5) T a (Cha e 6)

Ag ic e, f e a d he a d e (Cha e 7)

A e i i f g ee h e ga e f Da i h e i a e i c ded i he ca c a i , i c di g e i i f c i f f i f e , i d ia ga e a d i d ia

ce e , a e ea e , e i i f ag ic e a d e i i a d e a e i g f f e a d he a d e ac i i ie , i a i i ag ic e. CO2

e i i f c i f bi a (b i g f d chi a d d e e , f e a e) i c ide ed g ee h e-ga - e a he e i i c ed a d a e he ef e

i c ded.2 F he e, e i i f i e a i a hi i g a d ai a a e i c ded, a he e ec a e dea i h de e a a e UN ag ee e i h hei

c i a e a ge .

I h , he e g ee h e ga e c e a ga e ha c ib e he g ee h e effec . A i c ea e i he c ce a i f g ee h e ga e i he a he e

i c ea e he g ee h e effec , a d hi ca ca e g ba ea e e a e i e a d g ba c i a e cha ge.

G ee h e ga e i c de ca b di ide (CO2), e ha e (CH4), i ide (N2O) a d f i a ed g ee h e ga e (F ga e ). The ga e ha e diffe e g ee h e effec

ha a e c e ed i CO2 e i a e (abb e ia ed CO2-e .) ba ed hei G ba Wa i g P e ia (GWP) e a 100- ea i e e i d e a i e CO2.

Te bo 1: Im o an g eenho e ga e , hei o ce and CO2 e i alen .

CO2

(ca b di ide)

F e a e, f c b i f f i f e ch a c a , i , a d a a ga , a d a he e ea e f ed ca b a CO2 f i a d f e . GWP: 1 CO2-e .

CH4

( e ha e)

F ga ic ce e ch a he dige i e f a i a a d c i g f ga ic a e. GWP: 25 CO2-e .

2 P a he UN e h d g , CO2 f c i f bi a h d be ca c a ed a d e ed de a -ca ed e i e a d he e e i i ha e he ef e bee i c ded i he a i a i e . Thi i beca e he e i i a e i c ded a a ea ie age, i.e. he ca b ed i bi a i

e ed f fie d a d f e . Thi e a a d he e a ed e i i a e ca c a ed a d i c ded i he e i i i e f he c f he e he bi a igi a e .

(9)

Page N2O

( i ide)

F i ge c e i , f e a e f a e a ied i . GWP: 298 CO2-e .

F ga e F che ica ce e , ch a ef ige a i c i g e a d he d ci g a ic f a . GWP: f e a e 22,800 CO2-e . (SF6) I e a i a g ide i e g ee h e ga i e ie de g eg a cha ge he e

edge bec e a ai ab e d e e ea ch e c. Thi a a ie edge ab he e ec i e GWP a e f g ee h e ga e , a d he e a e a cha ge a he ea ie i af e e e ea ch e ha e bee b i hed b he UN

I e g e e a Pa e C i a e Cha ge (IPCC) i e f i A e e Re (AR).

The i e a i a g ide i e i c de e i e e f eca c a i f e i i g a a g ee h e ga i e ie g i g bac 1990, he e e ch cha ge e h d g a e i d ced. Thi i e e he i e e ie f g ee h e ga e i i bec i g i c i e d e cha ge i GWP. U a d i c di g he 2022 e ( hich c e he

e i d 1990-2020), he ab e GWP a e f IPCC AR4 (2007) h d be ed. I he Pa i Ag ee e , i a decided ha he GWP a e f IPCC AR5 (2013) a e be ed f 2024 a d a d , a he a e .

E i i f g ee h e ga e a e ea ed, b a e ca c a ed ba ed e i i ac i i da a, ch a f i f e c i , be f i e c i ag ic e, a d e a d a g h, deca a d ha e .

The e i i fac a e eg a ad ed he e edge e e ge . Whe hi ha e , he ec i , b a he hi ica fig e a d he a i ic a e ad ed d ce a e c ec e e a i f hi ica e i i . Thi ea ha

ec i c d a e he ba i f a e ed e i i fac .

Te bo 2: Ba eline ea emi ion (1990) adj ed a d b 2 million onne com a ed o la ea o look.

Ba e i e ea e i i (1990) a e ad ed a d b 2 i i e c a ed a ea . A g he hi g , hi i beca e f a e e a ed he ca c a i f he

a a ea f ga ic i i h a i a i ga ic ca b c e ab e 6%. The a ea f ga ic i a d e i i f he e i i 1990 i c e e ad ed a d b 29%, f 4.7 i i e CO2-e . 6.1 i i e CO2-e . Si i a , 2017 e i i a e ad ed a d f 3.4 i i e CO2-e . 4.7 i i e CO2-e . U a d ad e a e ade f a a i ica ea a d i ec i de . M e e , e i i f ag ic e a e ad ed a d d e a e i ed e ha e e i i fac f i e c

a e.

1.3 Ho Ha DCEO20 Been P e a ed?

DCEO20 a e a ed b he Da i h E e g Age c , a i ed b a i e - i i e ia i i g g c i i g: he Mi i f C i a e, E e g a d U i i ie ; he Mi i f Fi a ce; he Mi i f Ta a i ; he Mi i f T a a d H i g; he Da i h T a , C c i a d H i g A h i ; he Mi i f E i e a d F d;

he Da i h Ag ic a Age c ; he Da i h E i e a P ec i Age c ; he Da i h Mi i f I d , B i e a d Fi a cia Affai ; a d he Da i h Na e Age c . I de a if he e h d gica a d ech ica -ec ic ba i f he de a a e i DCEO20, he Da i h E e g Age c ha e e c ed e e a

(10)

Page

e e a d i i i . The Da i h E e g Age c i e ib e f he e e g ba a ce a d f he ec i f e e g - e a ed e i i , hi e he Da i h Ce e f

E i e a d E e g (DCE) a Aa h U i e i i e ib e f he ec i f -e e g - e a ed e i i .

TheDCE ba e i ec i f e i i f ag ic e da a f he De a e f F d a d Re ce Ec ic (IFRO, U i e i f C e hage ) i he f f

ec i f he be f i e c i ag ic e a d da a e ec ed f e a d e ( e f c , f e a e). The DCE ba e i ec i f e i i a d e a f ca b ed i f e a ca c a i b he De a e f Ge cie ce a d Na a Re ce Ma age e (IGN) a he U i e i f C e hage . Ba ed he Da i h E e g Age c ec i f he e e g ba a ce a d da a f he Da i h E i e a P ec i Age c , he DCE i a e ib e f ec i g he - e e g - e a ed e i i , i c di g F ga e , a d e i i f i d ia ce e , bi ga d c i , e ac i f i a d a a ga , a d a e.

Fig e 2 i a e he e a de a d da a e e e i c ded i DCEO20.

Fig e 2: Denma k' Clima e and Ene g Model - he Dani h Ene g Agenc ' in eg a ed model and da a la fo m.

3 Some of he de ailed a m ion and me hod behind DCEO20 a e de c ibed in e o f om he Dani h Cen e fo En i onmen and Ene g (DCE), he De a men of Food and Re o ce Economic (IFRO), he Dani h Cen e fo Food and Ag ic l e (DCA) and he De a men of Geo cience and Na al Re o ce Managemen (IGN).

3 See he Da i h E e g Age c eb i e f de c i i a d d c e a i f he b de (Da i h E e g Age c , 2019h).

(11)

Page 10 1.4 Sen i i i ie and Unce ain ie

DCEO20 e e a ba e i e ce a i 2030 i g a ce a e f a i , hich he Da i h E e g Age c a e e be he bab e he ba i f c e edge a d i he ab e ce f a e ea e .

I i c cia ha he ec i a e ead a d ed i h a a e e ha e i i e a i a d ce ai ie affec he e e .

The ec i e ea ahead, a d he e a a f ea ea ega d e f a ea e . The ge e a e h d gica ce ai i ei f ced b c ide ab e ce ai i e ge a iab e .

A he e d f each ec a cha e , e ec ed ig ifica ce ai ie a e de c ibed.

Thi ea , he e i a ic a ce ai i ed he COVID-19 a de ic a d he a e a hich he Da i h ec i e e a i e a c di i . I addi i

ce ai ega di g h he a de ic i de e , ec ic ec e a de e d de e e i he i e a i a ec , f e ice a d b i e a d

c e c fide ce. The ec i a e ba ed e ec a i ab f e ice a d ec ic g h i COVID-19, beca e i i e ib e a if he e

ce ai ie . The f c f DCEO20 ha bee a ed he ea 2025 a d 2030 i de ef ec ha f e e i i a d e e g c i a e e ce i a ce ai .

1.5 Backg o nd Fig e and Ma e ial Online

The de ai ed a i behi d he ec i , i c di g a i c ce i g de e f h e i d, a PV a d bi ga , a e a ai ab e he Da i h E e g Age c eb i e (Da i h E e g Age c , 2019d).

(12)

Page 11

2 The O e all Pic e

I 2018, De a e i ed 54.8 i i e CO2-e .4 Thi ea ha , i 2018, De a a e i i f g ee h e ga e e e ed ced b 29% c a ed 1990.5

I he ab e ce f a e ea e , e i i a e e ec ed be ed ced 43.1 i i e i 2030, c e di g a ed c i f 44% c a ed i h 1990. Wi h ega d he a ge f ed ci g e i i b 70% b 2030, a ed c i eff f 26

e ce age i e ai , hich c e d 20 i i e CO2-e .

Tab e 1 a i e he g e ade a d he ed c i a d i g a ge .

Table 1: C en a of Denma k' ima a ge and commi men in he clima e and ene g a ea. The EU obliga ion fo emi ion o ide he ETS ec o i no a e ed. A b e en a e men ill be e a ed la e .

Ta ge S a o / ag eemen ba i S a in he ab ence of

an ne mea e 70% ed c i f a i a

g ee h e ga e i c . LULUCF* i 2030 e a i e

1990

The C i a e Ac (Da i h G e e , 2020) a d he ag ee e he C i a e Ac (Da i h G e e e a , 2019)

44% ed c i i 2030 A ed c i eff f 20 i i

e CO2-e . e ai . Pha e- f c a f

e ec ici d c i 2030

The 2018 E e g Ag ee e (Mi i f E e g , U i i ie a d C i a e, 2018b)

Wi be eached.

55% e e ab e ha e i a e e g e i 2030

The 2018 E e g Ag ee e (Mi i f E e g , U i i ie a d C i a e, 2018b) ed b he Re e ab e E e g Di ec i e a ge f a i a c ib i a

e a EU e e ab e ha e f 32% i 2030 (E ea C i i , 2018)

Wi be eached.

14% e e ab e ha e i

a i 2030 Re e ab e E e g Di ec i e (E ea C i i ,

2018) Wi be eached. U de i g

3.5% a ge f ec d- ge e a i bi f e i 2030 ha bee a e ed.

EU b iga i f e i i f g ee h e ga e

ide he ETS ec ( -ETS) i 2030

The Eff Sha i g Reg a i (EU, 2018) Ha e bee a e ed.

*LULUCF i an abb e ia ion fo emi ion and emo al f om Land U e Land U e Change and Fo e .

Hi ica , e e g i i ie a d ace hea i g (Cha e 3) i.e. he e ec ici a d hea i g a ea - ha e ade ig ifica c ib i ed ci g e i i a d i c i e d

2030. I 1990, he ec e i ed 31 i i e CO2-e ., c e di g 40% f a e i i f 1990.6 I 2030, de i e i c ea i g e ec ici d c i f e , he ec i e ec ed e i 2.3 i i e CO2-e . c e di g 5% f

a e i i i 2030.

E i i i i d a d e ice (Cha e 4) i dec ea e 2030, he ea e e g c i i i d a d e ice (e c di g he i a d ga i d ) i i c ea e b 1.9% a a . E e g - e a ed e i i i i d a d e ice (e c di g he i a d

4 The ece ea f hich fi a e e g a i ic (Da i h E e g Age c , 2019e) a d a e i i i e a e e (E ea E i e Age c , 2020b) a e a ai ab e. The ec i e a e i h a

a i ica de ia i he addi g he e i i i e ' de i g fig e . Thi de ia i i d e di g f a e , a g he hi g . The a i ica de ia i a 0.2 i i e CO2-e i 2018.

5 The UN ba e ea f De a ' e i i i e .

6 Mi i e i a e beca e i i a i ica ib e b ea d b i e ec e i i b e.

(13)

Page 12

ga i d ) i fa b 0.5% a a , hi e e i i f i d ia ce e i fa b 0.9% a a . E i i f he i a d ga i d i ef ec dec i i g

d c i . N e ha e i i e a ed e ec ici c i i i d a d e ice a e i c ded i Cha e 3.

Wa e a d a e a e (Cha e 5) a e e ec ed ed ce e i i b 5% 2030 c a ed i h 2018. The ed c i i i a i d e ed c i i e i i f

a dfi a d e ga ic a e bei g e a dfi .

Hi ica , he a ec (Cha e 6) ha h a e de c a d i c ea i g e i i , a d hi cha ge a gi a i he ec i . I 2030, he ec i e ec ed e i a 14 i i e CO2-e ., hich i 15% highe ha a e i i f 1990. A e ec ed i c ea e i he a e f e ec ic ca a d g-i h b id ca , af e 2025 i a ic a , i ha e a igh i ac e i i bef e 2030 d e

he g a e age e ice ife f ca f a d 15 ea .

F ag ic e, f e a d he a d e (Cha e 7), a di i c i i ade be ee e i i f i a i e ha e a d i ide f ag ic a d c i e ha d, a d e i i a d e a f CO2 i f e a d he a d ( he -ca ed LULUCF ec ) he he .

Hi ica , a e i i ed c i f 16% ha bee ea i ed i ag ic a d c i f 1990 i da . U 2030, e i i f ag ic a d c i a e e ec ed

e ai a e e he a e e e a da .

E i i f f e a d he a d e a e a ic a ce ai , i h c ide ab e a a f c a i . I 1990, he e e a b f e a 0.5 i i e CO2-e . U 2030, f e a e e ec ed ha e a a e e i i f 0.1 i i e CO2- e . Ne e i i f he a d a e e ec ed fa f 7.0 i i e CO2-e . i 1990 5.2 i i e CO2-e . i 2030. Thi ed c i i i a i d e i c ea ed

ie d , e ab i h e f ca ch c a d e-e ab i h e f e a d ga ic ag ic a i .

Fig e 4 h he e ec ed b ea d b ec f a e i i i 2030. Ag ic e, f e a d he a d e a e e ec ed e i 16.1 i i e CO2-e . T a i e ec ed e i 13.7 i i e CO2-e . I d a d e ice a e e ec ed e i 8.6 i i e CO2-e ., hi e he i i ie ec a e e ec ed e i a a f 4.6

i i e CO2-e .

(14)

Page 1

Fig e 3: To al emi ion b ec o 1990-2030 [mill. onne CO2-e .]. No ene g a i ic a e a ailable fo hi o ical emi ion in ind and e ice b e.7

Fig e 4: To al emi ion in 2030 b ec o [mill. onne CO2-e ., %].

7 N e e g a i ic a e a ai ab e f e i i i i d a d e ice b e. E e g c i i i d a d e ice f ace hea i g i ca eg i ed de I d a d e ice i 1990, hi e i he

ea i i ca eg i ed de E e g U i i ie a d ace hea i g . The f e i i i c ec . F 2018 a d a d , ace hea i g i i d a d e ice i ba ed a e f e e g c i (hea i g i d ia ce e ) (Hede d S e e , 2015).

0 10 20 0 0 0 0 0 0

1 0 201 202 20 0

Emissions [mill. ton CO2-eq.]

Energy Utilities and Space Heating Industry and Services Waste and Wastewater Transport

Agriculture Land Use and Foresty

Energy Utilities and Space Heating 2,

Industry and Services ,

20

Waste and Wastewater 2,

Transport 1 ,

2 Agriculture

10, 2

Land Use and Foresty ,

12

Emissions 20 0 [mill. tonnes CO2-eq.,

]

(15)

Page 1

3 Ene g U ili ie and S ace Hea ing

E ec ici a d hea Da i h h eh d a d b i e e f e e g i i ie i g e ec ici , di ic hea i g a d ga f ce a i ed g id a e a f i i di id a hea i g e i e i e ec ed e i 2.3 i i e CO2-e . i 2030, acc i g f 5% f a e i i .

Fig e 5 h ha i 2018, e ec ici a d hea i g acc ed f 10.8 i i e CO2-e ., c e di g 20% f a e i i f he ea . Of hi , e ec ici a d di ic hea i g i i ie e i ed 7.8 i i e CO2-e ., hi e e e g e f ace hea i g b h eh d a d b i e e e i ed 3.0 i i e CO2-e .

E ec ici a d di ic hea i g i i ie a e e ec ed ed ce e i i f 30.7 i i e CO2-e . i 1990 0.5 i i e CO2-e . i 2030. A g he hi g , hi ed c i i be he e f a a i i f c a -fi ed e ec ici a d di ic hea i g

d c i he ce . C a ha e- i e ec ed b 2028. See Cha e 5 i h ega d e i i f a e i ci e a i .

F h eh d a d b i e e i g di ic hea i g, e i i f hea i g a e e ec ed fa f 6.4 i i e CO2-e . i 1990 1.8 i i e CO2-e . i 2030. Thi ed c i i e i i i d i e b a i c ea i g ha e f bi a a ga (SNG) i he ga a e a f he e ec ifica i f hea i g, he e hea

i c i e e ace i -fi ed a d ga -fi ed b i e .

Fig e 5: Sec o emi ion Ene g U ili ie and ace hea ing 1990-2030 [mill. onne CO2-e .]. Ene g con m ion fo ace hea ing in ind and e ice i ca ego i ed nde "Ind and e ice " in 1990.

0 2 10 12 1 1 1 20 22 2 2 2 0 2

1 0 201 202 20 0

Electricity and District Heating Space Heating, Industry and Services Space Heating, Households, et al.

Emissions 20 0

(16)

Page 1 3.1 Ene g ili ie

The de e e i he f e ec ici , di ic hea i g a d ga i cha ac e i ed b a ha e- f c a a d b ig ifica e e ab e e e g de e .

3.1.1 Coal Will Be Pha ed O Befo e 2030

Fig e 6 i a e ha c a -ba ed i be ha ed i he e i d 2030.

Wi h he e ec ed ha e- f c a a N d a d e a he e d f 2028, a d he ece deci i ha e c a a F e i 2022 (Ode e M ici a i , 2020), E e g U i i ie e f c a i e ec ed be f ha ed bef e 2030.8

The a i i a a f c a -ba ed ha bee d i e b a c bi a i f

i ce i e (i c di g b id che e f a i i i g bi a , a e e i f hea f bi a a d g ad a e a a i f a e c i f e ec ici f hea i g) a d a ge ha e c a e b ici a i ie a d i a e c a ie .

F he e, e e g i i ie e f ga i e ec ed be g ad a ha ed a d be ed ced b 50% i 2030 c a ed i h 2018. Thi de e e i d i e b be e

i ie f a e a i e hea d c i a d e fa ab e c di i f ga -ba ed e ec ici d c i , a d e e ec ici ice a d e a f he ba ic a . I i e ec ed ha ga i i a i be ed i e i d f high e ec ici ice a d d i g ea - ad e i d i e ec ici a d di ic hea i g . I ead, hea d c i i be ba ed bi a a , hea a d a hea i g, hi e e ec ici d c i i c e i a i f i d e a d a PV.

Fig e 6: Con m ion of oil, coal, ga and olid bioma fo od c ion of elec ici and di ic hea ing 1990- 2030 [PJ]. Con m ion of a e i incl ded nde Cha e 5.

8 I i e ec ed ha i 2030, e e a i i e ai a i f e a i ba ed c a c e a e e e ad, b ch e i a ed be e i i ed.

0 20 0 0 0 100 120 1 0 1 0 1 0 200 220 2 0 2 0 2 0

1 0 201 202 20 0

Fuel consumption in electricity and district heating excl. waste incineration [PJ]

Biomass Gas Coal Oil

(17)

Page 1

3.1.2 Rene able Ene g Will Take O e Elec ici S l

Fig e 7 h ha he e e ab e -ba ed e ec ici ca aci i e ec ed i e 12 GW 2030; hi i ice he ca aci c a ed i h 2018. De e f 4,300 MW ff h e i d, 5,500 MW a PV a d 1,700 MW h e i d i e ec ed f 2018 2030.9

The e ec ed ff h e i d de e i a e f deci i a ead ade, a d e e a ff h e i d fa a e de c c i . F 2018 2030, e e e ff h e i d fa i be c c ed a d c i i ed.10 F he e, de e f a 700 MW f i d e i e ec ed de he O e -D che e.11 O e a ,

ff h e i d (i c di g ea h e i d bi e ) i e ec ed acc f e ha 40% f Da i h e ec ici d c i i 2030.

The e ec ed de e f a PV i ba ed edge ga he ed f

ici a i ie a d c a ie b he Da i h E e g Age c ab ec a ead fa i he e a a i ha e. F he e, he ec i a e ba ed a e ec ed c i ed ech gica de e e ha i he e de a ge g d- ed a i a a i c a i e, a e a a e ec a i ha he ici a i ie i a e a d a ai ab e a e i ed. Wi h he e i a ed e a i f ca aci , a PV i acc f a 15% f Da i h e ec ici d c i b 2030.

Bi a e a e cha e ag ee e (PPA ) i h a ge e ec ici c e a d ech g - e a ca f e de c e c ib e he ec ic iabi i f a PV ec . The a ge- ca e de e f a PV i c ea i g affec he e e e

ice f a PV i a a i d ci g e i he a e h , a d hi c d affec he a e ice f e ec ici i he g e . The ce ai i h e ec he

e e e ice f a ge a PV i a a i c d affec he de e e , beca e i i ce ai h he fi a cia a e i e d. F e a e, hi a ie he a e f PPA /GO (K2 Ma age e f he Da i h E e g Age c , 2019).

The h e i d ca aci i i c ea e b a . 1,700 MW, a d i d bi e a e e aced b e a d e efficie bi e . C e e , he e i be a igh dec i e i he be f i d bi e , f 4,200 da 3,900 i 2030. The e efficie

bi e i d ce 50% e e ec ici f h e i d ha da . I i e ec ed ha h e i d ca be e ab i hed a e e i he f e, b de e de e d acce a d a d he ibi i f b ai i g a a f ici a i ie .

9 The ca aci ie a e f he i di id a ech gie , a d a a e ec ici d c i e MW i diffe e f he diffe e ech gie .

10 C e H Re 3 (400 MW), K iege F a (600 MW), N h Sea ( h) a d N h Sea ( h) (350 MW), Th (800-1000 MW), a d addi i a i d fa i h a a ca aci f 1800-2000 MW de he 2018 E e g Ag ee e hich ha e bee ecified.

11 The e ec ed de e e f i d bi e de he O e -D che e i e i a ed he ba i f a ica i ecei ed b he Da i h E e g Age c f hich a e i i a i e iga i ice ce ha bee g a ed.

(18)

Page 1

Fig e 7: Elec ici l ca aci fo ola PV, on ho e ind and off ho e ind 1990-2030 [MW].

1,0000 2,000,000,000,000,000,000,000,000 10,000 11,000 12,000 1 ,000 1 ,000 1 ,000 1 ,000 1 ,000 1 ,000 1 ,000

201 202 20 0

Solar cells and wind power [MW]

Solar cells Onshore wind Offshore wind

(19)

Page 1 3.1.3 Mo e Elec ifica ion of Di ic Hea ing

Fig e 8 h ha he hea ca aci i ee a de e f a 800 MW f a ge e ec ic hea 2030. Hea i d ce 16 PJ f di ic hea i g i 2030, c e di g 12% f di ic hea i g c i . The de e i i g e , a d 80 i a a i a e i he a i g ha e ha e bee e ab i hed.

The de e f a ge e ec ic hea i d i e b e a i e e a i g c i a ic a , a d e a ed c i f he a e ec ic hea i g a d ha e- f he PSO a iff, eadi g e c f i g e ec ici f di ic hea i g d c i . A he

a e i e, he ca aci a e f a be f a - ca e a a ga a ( he ba ic a ) ha bee e ed, a d hi ha a ega i e i ac he ec ic

iabi i f a e i g a a ga a ba e ad.

I i e ec ed ha hea , i a ic a , i be ed i a - ca e di ic hea i g a ea ha e ga . The ec i i c de he e ec ed i ac f e e i f

he f e b iga i ( b iga i b ga ) a d CHP d c i ( e i e e f c -

ge e a i f e ec ici a d di ic hea i g). De e f a ge hea i e ec ed i a ge- ca e di ic hea i g a ea i E b e g-Va de, Ode e a d Aa b g. The e a ea ha e bee g a ed a e e i e ab i h hea i c ec i i h ha i g

f e i i g c a -fi ed d c i . I he a ci ie , e ab i hi g hea a a ge ca e i ib e de c e eg a i . Di ic hea i g i e ec ed be ba ed i a i bi a i he e a ea .

E ec ic b i e e e e a e a i e a ge hea ca aci i c a i hea , b e a e i h a e ca aci fac . The i a e f i a i g e ec ic b i e i e i he i ie f i c e he a ci a e ice a e , i c di g he

eg a i f he i be ee De a a d Ge a (E e gi e , 2020), hi e a e aci g i -ba ed a d ga -ba ed ea a d e e e ca aci ie .

Fig e 8: Hea l ca aci fo la ge elec ic hea m and elec ic boile 1990-2030 [MW hea ].

0 200 00 00 00 1,000 1,200 1, 00 1, 00 1, 00 2,000

201 202 20 0

Heat pumps and electric boilers [MW-heat]

Electric boilers Heat pumps

(20)

Page 1

3.1.4 Mo e Bioga En e Mo e G een Ga in he G id

Bi ga i ed f e ec ici a d hea d c i , di ec c i i i d , a d i g aded bi a a ga (SNG), hich i di ib ed i h a a ga ia he a a ga g id a d he ci ga g id. Fig e 9 h ha he c i f ai ga

i c ea ed 2018, b i e ec ed fa 2030, he ea d c i f SNG i e ha ad e f 5 PJ i 2018 22 PJ i 2023. M e e , e bi ga i be d ced f di ec e, i a i i e ec ici a d hea d c i . T a d c i f bi ga i h e ec ed i c ea e e 30 PJ i 2030.

Si ce a c i f ai ga i dec ea i g, a d d c i f bi a a ga i i c ea i g, he e e ab e ha e f ai ga i i c ea e 30% i 2030 (Cha e 8).

The d c i f bi ga ha bee i c ea i g i ce he i d c i f he b id che e i c ec i i h he 2012 E e g Ag ee e (Mi i f E e g , U i i ie a d C i a e, 2012). The ibi i f b i i g e a ica i de he e i i g

che e e ded 1 Ja a 2020, a h gh he e e ai a i a f e e i f i a a i de c c i , ided ce ai c i e ia a e e (Da i h E e g Age c , 2020b). The fi a dead i e f a ica i f i 1 J 2020 (Da i h E e g Age c , 2020a), a d he e d i bi ga e i he ef e ba ed a

e i i a e i a e f he be f i a a i i e ecei e d i g he ec i e i d (i c di g e e i ) a d a e i a e f hei e ec ed d c i . H e e , he e i a ed a f bi ga a c ibed he e e e i che e i e

ce ai .

Fig e 9: Con m ion of na al ga (fo il) and bio na al ga ( ene able SNG) 1990-2030 [PJ].

0 10 20 0 0 0 0 0 0 0 100 110

1 0 201 202 20 0

Consumption of mains gas [PJ]

Bio natural gas (renewable) Natural gas (fossil)

(21)

Page 20

3.2 S ace Hea ing - Falling Con m ion of Oil and Ga

Fig e 10 h ha a e e g c i f idi g hea b i e e a d h eh d i fa b 0.3% a a be ee 2018 a d 2030.

Di ic hea i g, ga a d bi a a e e ec ed c i e a a a e, hi e i - ba ed hea i g i be ed ced, a hi e f hea i g bec e e e e i e. Hea

, i a ic a , i a a g ea e e. H eh d c i f bi a , i c di g d e e , i e ec ed ha e ea ed b 2018 a d i i e f a d a d e d a d 2030.

The e e g a i g eff de he 2018 E e g Ag ee e (Mi i f E e g , U i i ie a d C i a e, 2018a) e i e i 2024, a d e e g -efficie c i e e ai ed a

ed ci g he hea i g de a d f b i di g i b i e e a d h eh d i ha e a c ide ab e effec a d he e d f he f eca ed e i d.

CO2 e i i f hea i g a e f he c i f i a d ga . Fig e 10 h ha he ed c i i e i i f hea i g i c i ge e e g c i f i - a d ga -fi ed b i e fa i g b 2.3% a a 2030. Bi a a ga (SNG) b e di g i ha e a ic a i f e ce he fa i e i i f ga c i ( ee Cha e 3.1.4 a d Cha e 8.2).12

Fig e 10: Ene g con m ion fo ace hea ing 1990-2030 [PJ]. Wa e hea i eco e ed f om o he ene g con m ion and i e defini ion no incl ded in he defini ion of final ene g con m ion. Ene g con m ion fo ace hea ing in ind and e ice i ca ego i ed nde "Ind and e ice " in 1990, ee foo no e 7.

12 Fi a e e g c i fig e a e c i a e-ad ed, he ea e i i a e ac a , hi ica e i i . 0

2 0 100 12 1 0 1 200 22 2 0

1 0 201 202 20 0

Energy consumption for space heating [PJ]

Natural gas (fossil) Bio natural gas (renewable) Other renewables

Coal Oil Solid biomass

Solid waste Waste heat recovery Ambient heat recovery District heating Electricity

(22)

Page 21 3.3 Sen i i i ie

P ec i f e ec ici a d di ic hea i g , a d ec i f d c i f e e ab e e e g ga e a d hea i g a e ge e a e i i e he f i g

a i :

• De e e i e ec ici c i , i c di g, i a ic a , e ec ici c i b da a ce e

• De e e i f e ice a d ca b ice

• D e ic de e f h e i d, i a ic a he a e i h hich de i d bi e i be dec i i ed a d he a ai abi i f ca i f e bi e

• D e ic de e f c e cia a PV (g d- ed a fa )

• The a e a hich i - a d a a ga -fi ed b i e e ha ed f hea

• The e e ab e ha e f ai ga

The ec ed de e e a e cha ac e i ed b e ec ed ed c i i e i i 2030, a a e i a ic a f i e e deci i e a ed ha i g c a - fi ed e ec ici a d di ic hea i g d c i a d ff h e i d de e .

The ec ed e i i f e ec ici a d di ic hea i g i 2030 a e

cha ac e i ed b e ce ai ha he ec . C e di g i h he a i i e e ab e e e g , e i i i bec e e e i i e c i a e a d ea he c di i . I 2030, f c a i i c i a e a d ea he c d ea f c a i i he

a ge f +/- 0.2 i i e CO2-e ., a ed +/- 5 i i e CO2-e . e i .

H e e , he ce ai ie i ed de e e i i be ig ifica f he a ec f he e e g e , i c di g i /e f e ec ici , e ec ici ice i he

a e a d he e f bi a .

(23)

Page 22

4 Ind and Se ice

The ec i e ec ed e i 8.6 i i e CO2-e . a d i he ef e acc f 20% f a e i i i 2030.

Fig e 11 h ha he ec e i ed 9.6 i i e CO2-e . i 2018, c e di g 18% f a e i i . The ha e e a i e a e i i i

he ef e be igh highe i 2030, a h gh ab e e i i a e e . E i i b i d ie a d e ice i c de e e g - e a ed e i i e i g f e e g c i f d c i ce e , i c di g i d ia ce hea a d i e a a . F he e, e i i f i d ia d c i ce e a e a i c ded, hi e e i i f hea i g f b i di g a d he ace a ea i he b i e ec a e i c ded i Cha e 3. Fi a , e i i f a -c i a d f a i g i he i a d ga i d a e a i c ded.

I 2030, he e e g - e a ed e i i (e c di g he i a d ga i d ) a e e ec ed acc f 54% f he ec ' e i i , he i a d ga i d i e ec ed acc f 25%, hi e i d ia ce e a e e ec ed acc f 21%. The e e g - e a ed e i i (e c di g he i a d ga i d ) i fa b 0.5% a a 2030, e e a e e g c i i c ea e b 1.9% a a 2030. Thi i d e a

i c ea i g ha e f g ee ga e i he ga g id, a d he g ad a i d c i f hea f ce hea a ica i

E i i f i d ia ce e i fa f 2.0 i i e CO2-e . i 2018 1.8 i i e CO2-e . i 2030, d e a ed c i i e i i f F ga e .

E i i f a -c i a d f a i g i he i a d ga i d i fa f 2.5 i i e CO2-e . i 2018 2.2 i i e CO2-e . i 2030, d e dec i i g a d e efficie d c i .

0 1 2 10 11 12 1

1 0 201 202 20 0

Industry and Services [mill. tonnes CO2-eq.]

Industrial processes Manufacturing

Construction Agriculture and Horticulture

Own consumption in oil and gas extraction Flaring in oil and gas extraction

20

Emissions 20 0

Fig e 11: Emi ion in ind and e ice b bg o 1990-2030 [mill. onne CO2-e .] Ene g con m ion fo ace hea ing in ind and e ice i incl ded in 1990 fig e , ee foo no e 7.

(24)

Page 2

4.1 Con in ed Con m ion of Oil, Coal and Ga

E e g c i i i d a d e ice f d c i ce e , igh i g a d e i e , a d i e a a i acc f 29% f a fi a e e g c i i 2030.

Fig e 12 h ha he ec i e ec ed c e f i f e a i g 65.9 PJ i 2030, hich ea ha e e g - e a ed e i i i a 4.7 i i e CO2-e . The f i f e i g ce hea a d i e a a . I e a a i

c e cia a b ehic e a d achi e ch a c c i achi e , ac , c bi e ha e e , fi hi g b a a d c . E e g c i f he c e cia

a , ch a a , i i c ded i e e g c i b he a ec (Cha e 6).

The fa i g ha e f f i f e i d e a e ec ed i c ea e i he ha e f e e ab e i ai ga c i (Cha e 3.1.4 a d Cha e 8.2), b a

e ec ed i c ea ed e f hea f edi - e e a e ce hea .

C i f e e ab e e e g i i c ea e f 9% f a fi a e e g c i i d c i ce e 12% i 2030. Thi c e d a a a a e f i c ea e

f 4.3% i e e ab e e e g c i .

Fig e 12: Con m ion of fo il f el 1990-2030 in ind and e ice [PJ]. Na al ga i he fo il ha e of main ga . Oil i cla ified in he ame a a in Dani h ene g a i ic blica ion , i.e. incl ding e coke.

Ene g con m ion fo ace hea ing in ind and e ice i incl ded in 1990 fig e (foo no e 7).

4.2 T end in Tem e a e P oce Hea

I 2030, ab 45% f he c i f f i f e i i d a d e ice i e ec ed be ed f edi - e e a e ce hea ( e ha 150 C). Ab 25% i be

ed f high- e e a e ce hea ( e ha 150 C). The e ai i g 30% i g i e a a .

0 10 20 0 0 0 0 0 0 0 100 110 120

1 0 201 202 20 0

Consumption of fossil fuels in industry and services [PJ]

Solid waste (fossil share) Coal Natural gas Oil

(25)

Page 2

E e g c i f edi - e e a e ce hea i e ec ed i c ea e igh 2030 de i e i c ea ed ac i i d e ec ic g h. E e g -efficie c i e e de he e e g a i g (Mi i f E e g , U i i ie a d C i a e, 2018b) a e e ec ed ha e a affec 2024 i a ic a .

Fig e 14 h ha , da , f i f e a e 70% f e e g c i f edi - e e a e ce hea , a d ha hi ha e i i e fa 57% i 2030.

Ab 30% f edi - e e a e ce hea i ied a di ec fi i g13, f e a e di ec d i g i h ga f e ec ici f igh i g i g ee h e . Si i a , f i f e

a e 78% f e e g c i f high- e e a e ce hea b hi ha e i e ec ed fa 72% i 2030. T a e e g c i f high- e e a e ce hea i e ec ed i c ea e igh 2030 d e ec ic g h.

A d 80% f e e g c i f high- e e a e ce hea i di ec fi i g, e ecia i h c a , c e, e c e14 a d ga , f e a e i d c i f ce e a d fi e i e . He e, e ec ifica i he a a e a i e i he f f e e ab e e e g f e a e f e ib e i h e i i g ech g .

The fa i g ha e f f i f e i d e a e ec ed i c ea e i he ha e f e e ab e i ai ga c i .

E e g c i f i e a a i e ec ed d igh e he e i d de i e ec ic g h, a d hi i d e i c ea ed i e e i e e e g -efficie

ehic e a d achi e . A a f 99% f e e g c i f i e a a i e ec ed be e b f i f e i 2030.

13 I di ec fi i g, f e a e fi ed di ec a a f a i d ia ce . Thi i i c a he e f f e i b i e , f e a e, he e ce hea i ge e a ed ia ea ci c a i h ai .

14 C ai ed i hi he ca eg " i ".

0 10 1 20 2

0 0 0

201 202 20 0 201 202 20 0 201 202 20 0

Internal transport Proces heating high temperature

Proces heating medium temperature Energy consumption in industry and services by end-use and fuel [PJ]

Ambient heat Waste heat Solid biomass Oil Coal

Natural gas Bio natural gas Solid waste Electricity District heating Fig e 13: Ene g con m ion fo medi m- em e a e oce hea a lica ion in 2030 [PJ]. Thi a emen diffe f om he a emen of final ene g con m ion, hich doe no incl de l hea .

(26)

Page 2

4.3 Hea P m fo Medi m-Tem e a e P oce Hea Will Be in Demand Fig e 14 h ha he e f hea i e ha d b e, i h a igh i c ea e i e ec ici c i f i d ia hea . Thi ef ec e ec ed high

efficie cie f i d ia hea .

B i i i g i e a a e hea f i d ia ce e , hea ca hea a e a i e high e e a e a d i h high efficie c .

I i e ec ed ha i d ia hea i 4.1 PJ f edi - e e a e ce hea i 2030.

The ec i a e ha i d ie i i e i hea f ce hea . C i f e ec ici , a bie hea a d a e hea f hea i c i e 8% f e e g c i f edi - e e a e ce hea i 2030.

Fig e 14: Ene g con m ion fo hea m fo oce hea ing 2018-2030 [PJ]. "Wa e hea eco e " i in e nal e of a e hea in he fo m of ho ai , eam o ho a e a e .

0.0 0.

1.0 1.

2.0 2.

.0 . .0 .

201 202 20 0

Energy consumption in industry and services for heat pumps [PJ]

Electricity Ambient heat recovery Waste heat recovery

(27)

Page 2

4.4 CO2 In en i F he Red ced, B Le So F om 2025

The CO2 i e i i a e i dica f CO2 e i i e ec ic i d ced. The CO2 i e i i be e if i d bec e e efficie e ace f i f e i h

e e ab e . S c a hif ca a affec CO2 i e i .

Fig e 15 h CO2 i e i ie b ec a d e ea a ge diffe e ce d e

diffe e ce i d c i c di i . F e a e, he CO2 i e i f c c i i 4-5 i e e ha ha f a fac i g i d ie .

The e a CO2 i e i i fa b 2.8% a a 2025, a d he b 1.8%

a a 2030.

The e ed c i i CO2 i e i af e 2025 i d e he e i a i i 2024 f he e e g a i g eff de he 2018 E e g Ag ee e (Mi i f E e g , U i i ie a d C i a e, 2018a).

Fig e 15: CO2 in en i ie b b- ec o 2018-2030 [ 000 onne CO2-e . e bn. 2020-DKK]. The a emen of CO2 in en i ie incl de ene g - ela ed emi ion f om ene g con m ion fo ace hea ing in ind and

e ice , and emi ion f om ind ial oce e . 01

2 1011 121 11 11 1

Agriculture and horticulture

Manufacturing Construction Services

CO2 intensity [1000 tonnes CO2-eq. per bn. DKK]

201 202 20 0

(28)

Page 2 0.0

0.1 0.2 0.

0.

0.

0.

0.

0.

0.

1.0 1.1 1.2 1.

1.

1.

1 0 201 202 20 0

Emissions from industrial processes [mill. tonnes CO2-eq.]

Cement production Fluorinated (F) gasses etc.

4.5 Ind ial P oce e - Falling Emi ion O e all

Fig e 11 h ha e i i f i d ia ce e ha e bee ed ced f 2.3 i i e CO2-e . i 1990 2.0 i i e CO2-e . i 2018, a d ha e i i a e e ec ed fa 1.8 i i e CO2-e . i 2030.

E i i f i d ia ce e e i a i f ce e d c i a d f c i f f i a ed g ee h e ga e (F ga e ). P e i , he e e e a ge e i i f i ide (N2O) f d c i f i ic acid, h e e hi d c i cea ed i 2005. Fig e 16 h ha e i i f ce e d c i a e he i e a d i a e 75% f e i i i 2030.

E i i f ce e d c i e f b i g cha a d d ci g ce e a high e e a e (a . 1,500 deg ee Ce i ) i a ge ce e i . Li e e e ca a ed f he b face c ai ed ca b i he f ca ci ca b a e, CaCO3. B i g he i e e i ce e i he ef e e ea e CO2, he he he ce e i b ed i g c a d e e , beca e he CO2 e ea ed i he ca b ha

a ed i he i e e. The e ec ed e i i f ce e d c i a e ba ed

a i ab ec ic g h.

F ga e a e a g f ga e ed a ef ige a i ai -c di i i g e ,

ef ige a a d hea . F ga e a e a ed i i d ia d c ch a fi e e i g i he a d i eg a i age . A h gh F ga e a e ed i i i ed a , he ha e a ig ifica c i a e i ac . The CO2-e i a e f he F ga SF6, f e a e, i 22,800, i.e. e e f SF6 ha a c i a e i ac c e di g ha

f 22,800 e f CO2. The e i i f F ga e i c ea ed i he 1990 a d ea 2000 . E i i ea ed i 200915 a d a e e ec ed fa 2030.

15 F e a e, e ab i hi g e a i a HFC-ba ed c i g e a ba ed f 1 Ja a 2007, h e e efi i g e i i g e a i e i ed.

Fig e 16: Emi ion f om ind ial oce e b o ce 1990-2030 [mill. onne CO2-e .]

(29)

Page 2

4.6 O e a ional Con m ion in he No h Sea - Pa of he Oil and Ga Ind

N h Sea e i i ha e bee ca c a ed ge he i h e i i f he e ai i g i a d ga i d , hich i c de efi e ie . E i i f he i a d ga i d e f a -c i a d f a i g, hich a e ca c a ed he ba i f e ec ed

d c i .

A -c i a d f a i g i he N h Sea a e ba ed a a ga c i . Thi a a ga c i i i c ded i he ai ga c i .

The e a e h ee e e e i ec i f N h Sea d c i : e i i g fie d a d di c e ie ; a ica i f e ech g ; a d f e, e di c e ie .16 The ce ai i he e ec i i c ea e e i e, hi e c ib i f e ech g a d f e, e di c e ie a e b ec c ide ab e ce ai .

C ib i f e i i g fie d a d di c e ie a e ba ed he e a ' e i a e . C ib i f he a ica i f e ech g a d f f e, e di c e ie ha e bee ec ed ba ed d c i i e a d a i ab e ec ed c i e i d ced. Tech gica i e e f e i i g e e g - c i g e i e ha e bee i c ded.

P ec i i c de ede e e f he T a fie d17 a d a ce i g a bei g c ed d i 2023. The i e f he c i g d f he ce i g a i b ec

c ide ab e ce ai .

Fig e 17 h ha d c i i e ec ed i c ea e 2025 d e e ec . Af e 2025, d c i i e ec ed fa d e agei g fie d .

Fig e 18 h ha c i f a a ga f a -c i a d f a i g i he N h Sea i e ec ed fa 2025. Thi i beca e he T a fie d i e ec ed be e efficie af e ede e e , i h ed ced a -c i a d f a i g e i

d ced. F he e, a ce i g a i e ec ed be c ed d . Th ,

a h gh d c i i e ec ed i c ea e, a -c i a d f a i g a e e ec ed fa . A -c i a d f a i g a e e ec ed b e e i c ea e igh 2030, hi e a c i i e ec ed fa . Thi i beca e d c i f he a ica i f e ech g a d f f e, e di c e ie i e ec ed i c ea e, a d ha c ib i f a -c i a d f a i g ha e bee ec ed ba ed

d c i i e a d a i ab e ec ed c i e i d ced.

P d c i f he N egia fie d T i ce ed a he Da i h Ha a d faci i a d i i c ded i he a e e f a -c i a d f a i g. Ra i a Da i h fie d.

H e e , d c i f hi fie d i ce ed Ge a e i a d i he ef e i c ded i he Ge a a e e .

16 P ec i f i a d ga d c i a d a -c i a d f a i g a e ba ed a f eca b i hed 27 A g 2019 (Da i h E e g Age c , 2019f).

17 The Da i h E e g Age c a ed he T a fie d ede e e i Oc be 2017.

(30)

Page 2

Fig e 17: E ac ion of oil and na al ga 1990-2030 [PJ].

Fig e 18: A o-con m ion and fla ing in oil and ga e ac ion [PJ].

0 2

0 100 12 1 0 1 200 22 2 0 2

00 20 00 2

1 0 201 202 20 0

Oil and natural gas extraction [PJ]

Natural gas Crude oil

0 2 10 12 1 1 1 20 22 2 2

1 0 201 202 20 0

Natural gas for own consumption and flaring [PJ]

Own consumption in oil and gas extraction Flaring in oil and gas extraction

(31)

Page 0 4.7 Sen i i i ie

The ec i f e e g c i i i d a d e ice i e i i e e ec a i ab ec ic g h, hich ha bee i c ded a a e a e ge a i . The ec i a e a e i i e a i ab he de a d f e ec ici f da a ce e , a e a a i ab he effec f he e e g a i g 2024. Tech g ch ice a d f e e i a i de e d a i ega di g

ech g c , f e ice a d he ca b ice.

I a ic a , he e i ce ai ab h he C id-19 a de ic i affec he Da i h ec a d, b e e i , e i i f i d a d e ice 2030. P e i c i i i a i , ece he fi a cia c i i i 2007-2008, ga e i e c ide ab e cha ge i e i i e e . Th , e i i f i d a d e ice fe b 2.9

i i e CO2-e . f 2007 2009. The fi a cia c i i i dee ed ha e ef a e a e a e i i , d i e b c a cha ge i he i d a d e ice ec a d e CO2-i e i e b i e e . I i ce ai he he he a de ic i ead c a cha ge i i d ie a d e ice , a d i i ce ai i ha di ec i e i i i be affec ed i he edi a d ge e .

(32)

Page 1

5 Wa e and Wa e a e

The ec i e ec ed e i 2.3 i i e CO2-e . a d i he ef e acc f 5% f a e i i i 2030.

Fig e 19 h ha he ec e i ed 2.7 i i e CO2-e . i 2018,

c e di g 5% f a e i i . Wa e i ci e a i e i 1.5 i i e CO2- e . a d i e ib e f 60% f he ec ' e i i . I ga ic a e e i CO2

he i ci e a ed, d e i a ic a i c e f a ic, e i e a d a i i ed d c .

The ed c i i e i i 2030 i d e e ga ic a e bei g a dfi ed18. F he e i i d e e i i f hi ica a dfi bei g g ad a ed ced a d d e ea e a ched i i e ha e ea i g f bi ga a .

E i i f a e i ci e a i i c ea ed f 0.5 i i e CO2-e . i 1990 1.5 i i e CO2-e . i 2018. E i i f a e i ci e a i a e e ec ed

e ai a he c e e e 2030 i he ab e ce f a e ea e . E i i f a e a e ea e a e fa i g e a .

Fig e 19: Sec o emi ion "Wa e and a e a e " b main ca ego 1990-2030 [mill. onne CO2-e .].

5.1 Wa e Incine a ion - he La La ge Emi e in Di ic Hea ing

Fig e 20 h ha Da i h a e i ci e a i a a e c e i ci e a i g a . 3.8 e a e, f hich 10% i i ed a e. Da i h a e i ci e a i ca aci ha i c ea ed i acc da ce i h e a e bei g e f i ci e a i i ead f bei g

18 I ha bee hibi ed a dfi a e i ab e f i ci e a i i ce 1997.

0.0 0.2 0.

0.

0.

1.0 1.2 1.

1.

1.

2.0 2.2 2.

2.

2.

1 0 201 202 20 0

Waste and Wastewater [mill. tonnes CO2-eq.]

Landfills Wastewater Biological Waste etc. Waste Incineration

Emissions 20 0

(33)

Page 2

a dfi ed. A e a di i g f he a e, e ec ici a d di ic hea i g a e d ced h gh a e i ci e a i .

Wa e e f Da i h h eh d a d b i e e a e e ec ed d 2024 3.1 i i e . A g he hi g , hi i d e he deg ee f i ed a e e a a i e ec ed i he ab e ce f a e ea e . E ec ed g h i

c i ea ha a e e i b e e i c ea e 3.2 i i e i 2030. I ed a e e a e e ec ed dec ea e 2030, hi e a he a e i e a e i ci e a i ca aci i e ec ed d a a be f de a d def c i i e a e a e f e ice.

5.2 Landfill , Biological Wa e T ea men and Wa e a e

Fig e 21 h ha he i a ce f he e i i i 2030 i e ha e, e i g i a i f a dfi a d ea f bi ga a . Me ha e a d i ide e i i f c i g a d a e a e ea e a e a i c ded. Fi a , a e e i i f fi e a d c e a ia a e i c ded.

E i i f e ha e f a dfi a e i fa i g, a d hi i d e e a i e e a e bei g a dfi ed. H e e , e f ga ic deg adab e a e a e i c ea i g. The 1997 ba a dfi i g a e i ab e f i ci e a i ca ed a d i e f a dfi ed

ga ic a e f 0.8 i i e i 1996 0.1 i i e i 2009. A he a e i e, i 2016, a b id che e a e ab i hed (E ec i e O de . 752 f 21 J e 2016) f he e ab i h e f bi -c e a a dfi a d a e di a i e . H e e ,

e di g d c e a i f he effec f ch bi -c e , a ch effec ha bee i c ded i DCEO20. I ha bee e i a ed ha bi -c e ca ed ce e i i f

a e di a i e a d a dfi b 0.1-0.2 i i e a a . H e e , he ba i f hi e i a e ha e be e ified.

E i i f bi ga a a d c i g f ed a a d e d 2018. The ec i a e ha he i i ia i e a ched e e ea a bi ga a i ead a ed c i i he e i i fac f 2020, f a hi ica e i i fac f 4.2% 1%.19 Thi i c ib e e i i f bi gica a e ea e bei g

ed ced b 0.1 i i e CO2-e . 2030.

E i i f a e a e ea e a e i c ea i g e a , hich ca be a ib ed a fa i e i i f i ide a d a i c ea e i e i i f e ha e. I 2018, a

b id che e a a ched de he Da i h E i e a P ec i Age c ' E i e a Tech g De e e a d De a i P g a e (MUDP)

g a e. Thi b id che e i e ec ed ead be e e i g f i ide e i i f a e a e ea e a a d ed ced e i i .

19 The a ed e e i i fac i be e ified h gh ea e e , a d, a i h he a ea i c ec i i h de ia i , hi c d e i e ad i g f e a e e .

Referencer

RELATEREDE DOKUMENTER

Source: The Danish Utility Regulator based on own decisions; The Danish Ministry of Climate, Energy, and Utilities; The Danish Ministry of Finance; Energinet; The Danish Energy

Most specific to our sample, in 2006, there were about 40% of long-term individuals who after the termination of the subsidised contract in small firms were employed on

At government level, implementation of energy effi- ciency in Danish buildings belongs under the Ministry for Climate, Energy and Building and, more specifically, the Danish

With this report the Danish Council on Climate Change hopes to be able to inspire the government and the remaining parties in the Danish Parliament to discuss the potential of

The increasing focus on green energy among states on the west coast has prompted the Danish Ministry for Climate, Energy and Utilities and the Danish Energy Agency to post an

In accordance with the Energy Agreement published on the 29 th of June 2018 and supported by all political parties in the Danish Parliament, the Danish Energy Agency has prepared

This morning, Danish Minister for Energy, Utilities and Climate, Lars Christian Lilleholt, briefed the parties behind the 2012 Energy Agreement (the Red- Green Alliance, the

The Danish Energy Agency (DEA) had the pleasure of welcoming the 15 delegates, including the OECD and representatives from the Ukrainian government as well as the Ministry of Energy