• Ingen resultater fundet

Xreg (L13-16)

N/A
N/A
Info
Hent
Protected

Academic year: 2022

Del "Xreg (L13-16)"

Copied!
109
0
0

Indlæser.... (se fuldtekst nu)

Hele teksten

(1)

Stochastic Adaptive Control (02421)

www.imm.dtu.dk/courses/02421

Niels Kjølstad Poulsen

Build. 303B, room 048 Section for Dynamical Systems

Dept. of Applied Mathematics and Computer Science The Technical University of Denmark

Email: nkpo@dtu.dk phone: +45 4525 3356 mobile: +45 9351 1161

2020-03-12 16:59

Xreg (L13-16)

L14 L15 L16

1 / 109

(2)

Learning objectives

A bit motivation

Prediction in the ARMA structure Prediction in the ARMAX structure The Diophantine equation

(3)

Control and External process models

3 / 109

(4)

Wind turbine control

System and wind disturbance:

 θǫ

ωr

ωg

β v

˙ v

t+1

=As

 θǫ

ωr

ωg

β v

˙ v

t

+Bsut+vt R1 Standard form

yt=Csxt+wt

xt+1=Asxt+Bsut+Ket Innovation form

yt=Csxt+et

yt=Cs

qI−As −1

Bsut+ Cs

qI−As −1

K+ 1

et =G(q)ut+H(q)et

A(q−1)yt=q−1B(q−1)ut+C(q−1)et ARMAX form

(5)

WT linearized aroundvm= 17m/sandfs= 10Hz

A(q−1)yt=q−1B(q−1)ut+C(q−1)et

After model reduction:

A(q−1) = 1−3.8q−1+ 5.9q−2−4.7q−3+ 1.9q−4−0.3q−5+ 3.9·10−4q−6

B(q−1) = −875−2570q−1+ 4912q−2−558q−3−916q−4−10q−5

C(q−1) = 1−0.61q−1

5 / 109

(6)

The In box

(7)

External Control

System and environment

A(q−1)yt=q−kB(q−1)ut+C(q−1)et

or more general:

A(q−1)yt=q−kB(q−1)

F(q−1)ut+C(q−1) D(q−1)et+d Cost function

7 8 9 10 11 12 13 14 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Density functions

tickness Minimal variance control

J=En

(yt−w)2o

7 / 109

(8)

Prediction

Prediction, Forecast, Prognosis

Has an importance in itself (→time series analysis):

Prediction of $ value, Stock marked

Power demand (Production planning), Power potential in wind turbine farms Water level at Højer sluse

Here mainly because

Control Design (predict the effect of the disturbances and our control action).

System Identification (Max Likelihood=good predictions for the Gaussian case.)

(9)

Prediction k step ahead

The system is a stationary ARMA process:

A(q−1)yt=C(q−1)et et∈Niid 0, σ2

⊥ Yt−1 yt=C(q−1) A(q−1)et

Constraints:

ˆ

yt+k|t=f unc(Yt)

Criteria:

J=E n

(yt+k−yˆt+k|t)2o

Result:

ˆ

yt+k|t=En yt+k|Yt

o

9 / 109

(10)

Prediction in the ARMA-structure - marginal

yt=C(q−1)

A(q−1)et System model

ˆ

yt+k|t= S(q−1)

C(q−1)yt Preditor (k step ahead)

˜

yt+k|t=G(q−1)et+k Prediction error Diophantine equation:

C(q−1) =A(q−1)G(q−1) +q−kS(q−1)

G(0) = 1, ord(G) =k−1 ord(S) =M ax{na−1, nc−k}

(11)

Polynomials, transfer functions and LTI systems

c0+c1q−1+ ...+cnq−n 1 +a1q−1+ ... +anq−n

=c0+q−1(c1−c0a1) + (c2−c0a2)q−1+ ...(cn−c0an)q1−n 1 +a1q−1+ ... +anq−n

or stated shortly as:

C(q−1)

A(q−1) =g0+q−1S1(q−1)

A(q−1) g0=c0

where

S1(q−1) =s0+s1q−1+ ... +sn−1q1−n The order ofS1isn−1(or less) and:

si=ci+1−c0ai+1 i= 0, ... n−1

11 / 109

(12)

Polynomials, transfer functions and LTI systems

C(q−1)

A(q−1) =g0+q−1n

g1+q−1n ...n

gk−1+q−1Sk(q−1) A(q−1)

o ...oo

=g0+g1q−1+ ... +gk−1q1−k+q−kSk(q−1) A(q−1) or

C(q−1)

A(q−1) =Gk(q−1) +q−kSk(q−1)

A(q−1) C(q−1) =A(q−1)G(q−1) +q−kS(q−1)

where

Gk(q−1) =g0+g1q−1+ ...+gk−1q1−k and the order ofSkisn−1(or less).

Here the coefficients,gi, are the coefficients in the pulse response of C(q−1)

A(q−1) =

X

i=0

giq−i

(13)

Prediction in the ARMA structure - (C(0) = 1) - marginal

yt+k= C(q−1)

A(q−1)et+k=G(q−1)et+k+S(q−1)

A(q−1)et et=A(q−1) C(q−1)yt

yt+k=G(q−1)et+k+S(q−1)

C(q−1)yt G(q−1)et+k=et+k+...+gk−1et+1

ˆ

yt+k|t=E{yt+k|Yt}= S(q−1)

C(q−1)ytt+k|t=G(q−1)et+k=et+k+...+gk−1et+1

V ar{˜yt+k|t}=σ2[1 +g12+...+g2k−1] = ˜σ2 yt+k|Yt∈N

S Cyt,σ˜2

r˜y(m) = 0 for m > k

Stability ofCplays a role.

13 / 109

(14)

Prediction - simultaneously

From marginal prediction

yt+k= Sk(q−1)

C(q−1)yt+Gk(q−1)et+k= 1 C(q−1)

Sk

 yt

yt−1

.. . yt+1−k

 +

Gk

 et+1

et+2

.. . et+k

to simultaneously prediction

 yt+1

.. . yt+k

.. .

= 1

C(q−1)

 S1

.. . Sk

.. .

 yt

yt−1

.. . yt+1−n

 +

 G1

.. . Gk

.. .

 et+1

et+2

.. . et+k

=

 ˆ yt+1

.. . ˆ yt+k

.. .

+ GE

Yt+1:t+k|Yt∈N

Y ,ˆ Gσ2GT

(15)

Example - Random walk

wt= 1 1−q−1et

0 10 20 30 40 50 60 70 80 90 100

0 0.5 1 1.5 2 2.5

1=(1−q−1)(1 +g1q−1+g2q−2+...+gk−1q1−k) +q−ks0

G(q−1) = 1 +q−1+q−2+...+q1−k S(q−1) = 1

ˆ

wt+k|t=wt

V ar

˜

wt+k|t =kσ2

15 / 109

(16)

Pause

(17)

The Diophantine equation

Diophantus of Alexandria

Born between A.D. 200 and 214 Dead between 284 and 298 (aged 84) sometimes called "the father of algebra"

Title page of Arithmetica

17 / 109

(18)

The Diophantine equation

GivenA,B¯andC(which here aregeneralpolynomials) findRandSfrom C(q−1) =A(q−1)R(q−1) + ¯B(q−1)S(q−1)

where:

C(q−1) = c0+c1q−1+...+cncq−nc

B(q¯ −1) = b1q−1+...+bnbq−nb B(0) = 0¯ A(q−1) = 1 +a1q−1+...+anq−n

Do not have an unique solution in general.

R(q−1) = R0(q−1) + ¯B(q−1)F(q−1) S(q−1) = S0(q−1)−A(q−1)F(q−1)

Uniquesolution if:

nr=ord(R) =nb−1 ns=M ax{na−1, nc−nb}

(19)

The Sylvester method

Let:

A(q−1) = 1 +a1q−1+a2q−2 R(q−1) =r0+r1q−1+r2q−2 then:

A(q−1)R(q−1) =

r0

a1r0+r1

a2r0+a1r1+r2

.. .

=

1 0 0

a1 1 0 a2 a1 1 0 a2 a1

0 0 a2

 r0

r1

r2

C(q−1) =A(q−1)R(q−1) + ¯B(q−1)S(q−1)

 c0

c1

.. . cnc

0 .. . 0

=

1 ... 0 0 ... 0

a1 . .. ... b1

.. .

a2 0 b2 0

..

. 1 ... b1

an a1 bnb b2

0

..

. 0

.. . ..

. an−1

..

. bnb−1

0 an 0 bnb

 r0

r1

.. . rnr

s0

s1

.. . sns

19 / 109

(20)

Number of equations:

M ax

1 +nc, 1 +na+nr, 1 +nb+ns Number of unknowns:

nr+ 1 +ns+ 1 Match:

M ax

nc−nr−ns−1

[1]

, na−ns−1

[2]

,nb−nr−1

[3]

= 0

If now:

nr=nb−1

Then [3] = 0. Furthermore [2] and [1] must be ≤0 ie.) M ax

na−ns−1, nc−nb−ns

≤0 → M ax

na−1, nc−nb

≤ns

or (since we are going for a minimum order solution)

n =M ax

n −1,n −n

Unlessn is large, the first constraint is active.

(21)

The Diophantine equation

Truncated pulse method - applicably ifB¯=q−k.

C(q−1) =A(q−1)R(q−1) +q−kS(q−1)

R(q−1) =G(q−1) =C(q−1) A(q−1)

k

S(q−1) =qk C(q−1)−A(q−1)G(q−1)

21 / 109

(22)

Example - k = 1

yt−1.7yt−1+ 0.7yt−2=et+ 1.5et−1+ 0.9et−2 et∈Niid 0, σ2

k= 1

(1 + 1.5q−1+ 0.9q−2) = (1−1.7q−1+ 0.7q−2)1 +q−1(s0+s1q−1)

1 : 1.5 =−1.7 +s0 s0= 3.2 2 : 0.9 = 0.7 +s1 s1= 0.2

ˆ

yt+1|t= 3.2 + 0.2q−1 1 + 1.5q−1+ 0.9q−2yt

˜

yt+1=et+1 V ar=σ2

(23)

k = 2

(1 + 1.5q−1+ 0.9q−2) = (1−1.7q−1+ 0.7q−2)(1 +g1q−1) +q−2(s0+s1q−1)

1 : 1.5 =−1.7 +g1 g1= 3.2 2 : 0.9 = 0.7 +−1.7g1+s0 s0= 5.64 3 : 0 = 0.7g1+s1 s1=−2.24

ˆ

yt+2|t= 5.64−2.24q−1 1 + 1.5q−1+ 0.9q−2yt

˜

yt+2=et+2+ 3.2et+1 V ar=

1 + (3.2)2

σ2= 11.24σ2

23 / 109

(24)

Prediction in the ARMAX model

ARMA

I.e.k-step prediction (the horizon equals the time delay through the system)

A(q−1)yt=q−kB(q−1)ut+C(q−1)et Ayt+k=But+Cet+k

Using the Diophantine equation:

C(q−1) =A(q−1)G(q−1) +q−kS(q−1) G(0) = 1 ord(G) =k−1

ord(S) =M ax{na−1, nc−k}

yt+k = 1 C

AG+q−kS yt+k

= 1

C

GAyt+k+Syt

(25)

yt+k = 1 C

GAyt+k+Syt

Just a copy of last result

yt+k = 1 C

Gh

But+Cet+k

i +Syt

Using the blue result Ayt+k=But+Cet+k

= 1

C

BGut+Syt

+Get+k Rearranging terms.

ˆ

yt+k|t= 1 C(q−1)

B(q−1)G(q−1)ut+S(q−1)yt

˜

yt+k|t=G(q−1)et+k=et+k+...+gk−1et+1 MinVar

25 / 109

(26)

Alternative derivation

yt+k = B Aut+C

Aet+k=B Aut+S

Aet+Get+k

= B

Aut+S A

A C h

yt−q−kB Aut

i +Get+k

= B

A h

1−q−kS C i

u+S

Cy+Get+k

= B

A AG

C ut+S

Cyt+Get+k

= 1

C h

BGu+Syi +Get+k

MV

(27)

Minimum variance control

Problem definition

System and environment

A(q−1)yt=q−kB(q−1)ut+C(q−1)et et∈Niid 0, σ2

et⊥history(Yt−1)

Criterion:

t=E{y2t+k}

Constraints:

ut=f unk{Y˜t}

Prediction

27 / 109

(28)

Minimum variance control

t=E{y2t+k} yt+k= 1

C[BGut+Syt] +Get+k

Controller:

B(q−1)G(q−1)ut=−S(q−1)yt ut=− S(q−1) B(q−1)G(q−1)yt

Design

C(q−1) =A(q−1)G(q−1)+q−kS(q−1)

G(0) = 1 ord(G) =k−1 ord(S) =M ax(na−1, nc−k)

(29)

Closed loop (MV)

Closed loop

yt=G(q−1)et ut=−S(q−1) B(q−1)et

with variances V ar{yt}=σ2

k−1

X

i=0

g2i yt⊥Yt−k

V ar{ut}=trfvar(B,−S)σ2

MV0

29 / 109

(30)

Example

Check the effect ofk.

A= 1−1.5q−1+ 0.95q−2 B= 1 + 0.5q−1 k= 1

C= 1−0.95q−1 et∈F(0, σ2) σ2= (0.1)2 Design:

C = AG + q−kS

(1−0.95q−1) = (1−1.5q−1+ 0.95q−2)1 +q−1(s0+s1q−1) Controller

ut=− S

BGyt=−0.55−0.95q−1 1 + 0.5q−1 yt

ut=−0.5ut−1−0.55yt+ 0.95yt−1

Closed loop:

yt=et V ar{yt}=σ2

(31)

0 50 100 150 200 250 -1

-0.5 0 0.5 1

y

t Output and Reference

0 50 100 150 200 250

-1 -0.5 0 0.5 1

u

t Control signal

31 / 109

(32)

Cut in

0 50 100 150 200 250 300 350 400 450 500

-1 -0.5 0 0.5 1

0 50 100 150 200 250 300 350 400 450 500

-1 -0.5 0 0.5 1

(33)

k = 2

(1−0.95q−1) = (1−1.5q−1+ 0.95q−2)(1 +g1q−1) +q−2(s0+s1q−1) ut=− S

BGyt G= 1 + 0.55q−1

R= 1 + 1.05q−1+ 0.275q−2 S=−0.125−0.53q−1

0 100 200 300 400

-1 -0.5 0 0.5 1

Output and Reference signal, k=1

0 100 200 300 400

-1 -0.5 0 0.5 1

Control signal

0 100 200 300 400

-1 -0.5 0 0.5 1

Output and Reference signal, k=2

0 100 200 300 400

-1 -0.5 0 0.5 1

Control signal

33 / 109

(34)

Problems with zeros

A= 1−1.5q−1+ 0.95q−2 B= 1 + 0.95q−1 k= 1

C= 1−0.95q−1 et∈F(0, σ2) σ2= (0.1)2

R=BG= 1 + 0.95q−1 S= 0.55−0.95q−1 ie.

ut=−0.95ut−1−0.55yt+ 0.95yt−1

0 50 100 150 200 250 300 350 400 450 500

-0.4 -0.2 0 0.2 0.4

Output signal

-1 0 1 2

Control signal

(35)

Summary - L13

Minimum variance control is a basic stochastic control strategy, but have problems with:

Set point

Constant disturbance Large control effort (Detuning)

Non damped system zeroes (inBandC).

35 / 109

(36)

End L13

(37)

Learning objectives - L14

Minimum variance control is a basic (academic) stochastic control strategy, but have problems with:

Set point

Constant disturbance Large control effort (Detuning)

Non damped system zeroes (inBandC).

37 / 109

(38)

M V

0

-control

System:

A(q−1)yt=q−kB(q−1)ut+C(q−1)et+d Cost:

J=E n

(yt+k−wt+k)2o

→ J=E n

(yt+k−wt)2o

Set point (piecewise constant) Controller:

BGut=Cwt−Syt−Gd ut= C

BGwt− S BGyt−1

Bd Design:

C=AG+q−kS G(0) = 1 ord(G) =k−1 ord(S) =max(na−1, nc−k)

wt

−Gd

ut C

et d

yt A−1

−S 1

C BG qk B

(39)

Why: (C=AG+q−kS, Ayt+k=But+Cet+k+d)

yt+k= 1 C

hGA+q−kSi

yt+k= 1

C[BGut+Syt+Gd] +Get+k yt+k= 1

C[BGut+Syt+Gd] +Get+k

yt+k−wt= 1

C[BGut+Syt−Cwt+Gd] +Get+k

Closed loop

yt=q−kwt+Get

ut=A Bwt−S

Bet− 1 Bd

L15

39 / 109

(40)

Other structures

General L-structure

Ayt=q−kB Fut+C

Det+d J=En

(yt+k−wt)2o

Design

C=AD G+q−kS ut= C

BG F Dwt− S

BG F Dyt− 1

Bd

Closed loop

yt=q−kwt+Get

ut=F A B wt− S

B F Det− 1

Bd

Box-Jenkins

yt=q−kB Fut+C

Det+d J=E

n

(yt+k−wt)2o

Design

C=D G+q−kS ut= C

BG F Dwt− S

BG F Dyt− 1

Bd

Closed loop

yt=q−kwt+Get

ut= F Bwt− S

B F Det− 1

Bd

(41)

Example

A= 1−1.5q−1+ 0.95q−2 B= 1 + 0.5q−1 k= 1 C= 1−0.95q−1 σ2= (0.1)2

Q=C= 1−0.95q−1 R=BG= 1 + 0.5q−1 S= 0.55−0.95q−1

ut=−0.5ut−1+wt−0.95wt−1−0.55yt+ 0.95yt−1

41 / 109

(42)

0 50 100 150 200 250 300 350 400 450 -3

-2 -1 0 1 2

Output and Reference signal

-3 -2 -1 0 1 2

Control signal

(43)

0 50 100 150 200 250 300 350 400 450 500 -2

-1 0 1 2

0 50 100 150 200 250 300 350 400 450 500

-2 -1 0 1 2

43 / 109

(44)

MV

0

Still problems with Control effort Non damped zeroes

(45)

PZ-control

PZ (Pole zero control, Change location (s) of pole(s) and zero(s).)

Detuning

yt close to ym(t) =q−kBm

Amwt rather than q−kwt

Example:

System:

(1−0.98q−1)yt=q−2(1 + 0.3q−1)ut+ (1 + 0.74q−1)et

Goal:

ym(t) =q−2 0.6 1−0.4q−1wt

45 / 109

(46)

PZ-control

System:

A(q−1)yt=q−kB(q−1)ut+C(q−1)et+d Cost:

J=E n

(Amyt+k−Bmwt)2o

Controller:

BGut=BmCwt−Syt−Gd Design:

AmC=AG+q−kS

G(0) = 1 ord(G) =k−1 ord(S) =max(na−1, nc+nam−k)

(47)

PZ - Proof

Why: (AmC=AG+q−kS, Ayt+k=But+Cet+k+d)

Amyt+k = AmC

C yt+k= 1 C

AGyt+k+Syt

i

= 1

C h

G

But+Cet+k+d +Syt

i

Amyt+k= 1 C h

BGut+Syt+Gdi +Get+k

Amyt+k−Bmwt= 1 C h

BGut+Syt−CBmwt+Gdi

+Get+k

47 / 109

(48)

Controller:

BGut=BmCwt−Syt−Gd

wt

u0

−S ut et

C

d

yt A1

BmC 1

BG qk B

Closed loop yt=q−kBm

Am

wt+ G Am

et ut=A B

Bm

Am

wt− S B

1 Am

et− 1 Bd

Detuned, but still problems with not well damped system zeroes.

(49)

Closed Loop - ARMAX and QRS controller

System:

Ay= ¯Bu+Ce+d B¯=q−kB Controller:

Ru=Qw−Sy−γ

u w

e

y

49 / 109

(50)

Closed Loop

System:

Ay= ¯Bu+Ce+d B¯=q−kB Controller:

Ru=Qw−Sy−γ

Multiply system with (R) ARy= ¯BRu+CRe+Rd Multiply controller with (B¯)

BRu¯ =BQw¯ −BSy¯ −Bγ¯ and obtain

(AR+ ¯BS)y= ¯BQw+RCe+ (Rd−Bγ)¯

(51)

System:

Ay= ¯Bu+Ce+d Controller:

Ru=Qw−Sy−γ

Multiply system with (S) ASy= ¯BSu+CSe+Sd Multiply controller with (A)

ARu=AQw−ASy−Aγ and obtain

(AR+ ¯BS)u=AQw−CSe−(Aγ+Sd)

51 / 109

(52)

GSP-control

General stochastic pole placement controller A(q−1)yt=q−kB(q−1)ut+C(q−1)et+d Argumentation:

Goal:

ym(t) =q−kBm

Am

wt

close related to:

t=E

(Amyt+k−Bmwt)2 Previously (PZ control) we looked at:

Amyt+k−Bmwt= 1 C

hBGut+Syt−CBmwt+Gdi

+Get+k We had then problems with undamped system zeros.

GSP alternative derivation

(53)

GSP control

We might change the PZ set up:

Amyt+k−Bmwt= 1 C h

BGut+Syt−CBmwt+Gdi

+Get+k Now, the problem with the system zeroes:

B=B+B

If we don’t cancel the zeros inB, then we have to keep them inBmie.

Bm=BBm1

Let’s try the following Diophantine equation (C→Ao)

CAm=AG+q−kS ord(G) =k−1 PZ AoAm=AG+q−kBS ord(G) =k+nb−1 GSP

then

Amyt+k−Bmwt=B

Ao

B+Gut+Syt−AoBm1wt+ G B

d

+ C Ao

Get+k

53 / 109

(54)

GSP control

AoAm=AG+q−kBS (Just a copy)

Why:

Amyt+k = AmAo

Ao

yt+k= 1 Ao

AGyt+k+BSyt

i

= 1

Ao

h G

But+Cet+k+d

+BSyt

i

Amyt+k= 1 Ao

h

B+BGut+BSyt+Gdi +GC

Ao

et+k

Amyt+k−Bmwt=B

Ao

h

B+Gut+Syt−AoBm1wt+ G B

di +GC

Ao

et+k

(55)

GSP control

Controller

B+Gut=Bm1Aowt−Syt− G B

d

wt

ut

−S

d yt et

G B

d

A−1

Bm1Ao 1 qk B

B+G C

55 / 109

(56)

GSP - Design

Design

1 FactorizeB=B+B 2 ChooseAm,Bm1

DC

Bm1B

Am

= 1

3 ChooseAoand solve AoAm=AG+q−kBS forSandG

4 Use the controller:

B+Gut=Bm1Aowt−Syt− G Bd

(57)

GSP - Alternative derivation

If the system Closed loop

Ay= ¯Bu+Ce+d is closed with Ru=Qw−Sy−γ then the closed loop is given by

y= BQ¯

AR+ ¯BSw+ RC

AR+ ¯BSe+ Rd−Bγ¯ AR+ ¯BS Now factorizeB¯=q−kB+Bthen

q−kB+BQ

AR+q−kB+BS =q−kBm

Am

Furthermore letR=B+G(Rmust haveB+as a factor) q−kB+BQ

AB+G+q−kB+BS= q−kBQ

AG+q−kBS =q−kBm

Am

Since we don’t want to cancelBit must be contained inBm, i.e.Bm=BBm1. This results in q−kBQ

AG+q−kBS =q−kBBm1

Am

or (sufficient condition) Q

AG+q−kBS =Bm1

Am

57 / 109

(58)

GSP - Alternative derivation

Q

AG+q−kBS =Bm1

Am

just a copy

The only wayBm1can be introduced is viaQ. FactorizeQintoQ=Bm1Ao, then Bm1Ao

AG+q−kBS =Bm1

Am

or

AG+q−kBS=AmAo

Back tracking:

R=B+G Q=Bm1Ao γ= G B

d Rut=Qwt−St−γ

(59)

GSP - Closed loop

yt=q−kBm1B

Am

wt+ G Am

C Ao

et

ut= A Am

Bm1

B+

wt− S AmB+

C Ao

et− 1 Bd

59 / 109

(60)

GSP control of wind turbine

(vm= 17m/sandfs= 10Hz)

A(q−1)yt=q−1B(q−1)ut+C(q−1)et

System and wind:

A(q−1) = 1−3.8058q−1+ 5.9125q−2−4.6877q−3+ 1.8890q−4

−0.30817q−5+ 3.8557·10−4q−6 B(q−1) = −875.47−2570.7q−1+ 4912.7q−2−558.79q−3

−916.30q−4−9.8661q−5 C(q−1) = 1−0.60653q−1

Zeroes:

pb1 = -4.2716 pb2 = -0.34865 pb3 = -0.010846 pb4 = 0.70469 pb5 = 0.99005

(61)

FactorizeB

B(q−1) = (1−pb1q−1)

B+(q−1) = b0(1−pb2q−1)(1−pb3q−1)(1−pb4q−1)(1−pb5q−1)

Hm(q) = 0.007197 + 0.03074q−1

1−2.399q−1+ 2.100q−2−0.6585q−3−0.0613q−4+ 0.0566q−5 B1m(q−1) =−1.1743 10−5

Solution:

S(q−1) = 2.1577·10−4+ 6.1771·10−4q−1

6.8528·10−4q−2+ 3.4421·104q3

6.5465·105q4+ 9.8279·108q5

Q(q−1) = B1

m(q−1)C(q−1) =1.1743·10−5+ 7.1226·10−6q−1

R(q−1) = B+(q−1)G(q−1) = 10.66670q−1

0.80045q−2+ 0.30604q−3+ 0.16603q−4+ 1.7641·103q5+ 4.7409·109q6+ 5.9708·1012q7+

7.5285·1015

q8+ 9.1726·1018 q9

61 / 109

(62)

0 1 2 3 4 5 6 7.5

8 8.5 9 9.5 10 10.5

11x 105

power : W

time : s

(63)

0 5 10 15 20 25 30 5.5

6 6.5 7 7.5 8 8.5 9 9.5

10x 105 Pe (reg.=solid, non-reg.=dotted)

time : s

power : W

0 10 20 30

11 12 13 14 15 16 17

b (solid) and uin (dotted)

time : s

angle : deg

0 10 20 30

-4 -3 -2 -1 0 1 2 3 4

db

time : s

speed : deg/s

63 / 109

(64)

0 5 10 15 20 25 30 0.4

0.6 0.8 1 1.2 1.4

1.6x 106 Pe (reg.=solid, non-reg.=dotted)

time : s

power : W

0 10 20 30

6 8 10 12 14 16 18 20

b (solid) and uin (dotted)

time : s

angle : deg

0 10 20 30

-6 -4 -2 0 2 4 6

db

time : s

speed : deg/s

(65)

GSP - no zeros canceled

Design

1 ChooseB=B (i.e.B+= 1).

2 ChooseAm,Bm1andAo

DC Bm1B

Am

= 1

3 Solve

AoAm=AG+q−kBS forSandG. HereR=G.

4 Use the controller:

Rut=Bm1Aowt−Syt−G Bd

(All zeros cancelled gives PZ control)

65 / 109

(66)

GSP - Closed loop (No zero cancellation)

Closed loop yt=q−kBm1B

Am

wt+ G Am

C Ao

et

ut=ABm1

Am wt− S Am

C Aoet− 1

Bd

(67)

End L14

67 / 109

(68)

Learning objectives - L15

MV0 MV0 has problems with control effort and non damped zeros

PZ - controller

Pole placement (GSP) controller MV1controller (I and II)

Generalized Minimum Variance control MV2controller

LQG (Linear Quadratic Gaussian control) GPC (MPC) Generalized Predictive Control

(69)

Control of Marine Vessels

Surface Vessel

From: C. Holden, Roberto Galeazzi, C. Rodrguez, T. Perez, T. I. Fossen, M. Blanke, M. A. S.

Neves. Nonlinear Container Ship Model for the Study of Parametric Roll Resonance Modeling, Identification and Control, 28, pp. 87-113, 2007.

69 / 109

(70)

Control of Marine Vessels

Surface Vessel

(71)

Control of Marine Vessels

Nomoto model

ψ˙=r r+ ˙rτ=κδ

ψ= κ s(1 +sτ)δ

ψ=q−1 b0+b1q−1 1 +a1q−1+a2q−2 δ

Stochastic model

(1 +a1q−1+a2q−2t

=q−1(b0+b1q−1t

(1 +a1q−1+a2q−2t

=q−1(b0+b1q−1t+vt

(1 +a1q−1+a2q−2t

=q−1(b0+b1q−1t

+(1 +c1q−1+c2q−2)et

71 / 109

(72)

M V

1

Controller I

System:

A(q−1)yt=q−kB(q−1)ut+C(q−1)et+d Cost:

J=E n

(yt+k−wt)2+ρu2to

Controller:

[BG+αC]ut=Cwt−Syt−Gd α= ρ b0

Design:

C=AG+q−kS G(0) = 1 ord(G) =k−1 ord(S) =max(na−1, nc−k)

Closed loop:

yt=q−k B

B+αAwt+BG+αC

B+αA et+ α B+αAd ut= A

wt− S

et− 1 d

(73)

M V

1

Controller

Preliminaries(Just a copy)

Incomplete state information:

minu(y)

E n

J(x, u)o

=E n

minu(y)

E n

J(x, u)|yoo

I(x, u) =E n

J(x, u)|yo

x|y∈F(ˆx, P)

En

xSx|yo

= ˆxSxˆ+tr(SP)

73 / 109

(74)

M V

1

Controller I - Proof

Optimality

J=E n

(yt+k−wt)2+ρu2t

o

I=En

(yt+k−wt)2+ρu2t

Yt

o

= (ˆyt+k−wt)2+ρu2t + var(˜yt+k)

yt+k= 1

C(BGut+Syt+Gd) +Get+k

ˆ yt+k= 1

C(BGut+Syt+Gd)

Stationarity

2(ˆyt+k−wt)b0+ 2ρut= 0

1

C(BGut+Syt+Gd−Cwt+αCut) = 0

α= ρ b0

(BG+αC)ut+Syt+Gd−Cwt= 0

(75)

MV

1

- closed loop

System and controller

System:

Ay= ¯Bu+Ce+d B¯=q−kB Controller:

Ru=Qw−Sy−γ

R=BG+αC Q=C γ=Gd

Rd−Bγ¯ = (BG+αC)d−q−kBGd

=αCd

yt=q−k B

B+αAwt+BG+αC B+αA et

+ α

B+αAd

Closed loop

(AR+ ¯BS)y= ¯BQw+RCe+ (Rd−Bγ)¯ (AR+ ¯BS)u=AQw−CSe−(Aγ+Sd)

AR+ ¯BS=A(BG+αC) +q−kBS

=B(AG+q−kS) +αAC

=C(B+αA)

Aγ+Sd=AGd+Sd

=Cd

ut= A

B+αAwt− S B+αAet

− 1 B+αAd

75 / 109

(76)

M V

1

Controller II

System:

A(q−1)yt=q−kB(q−1)ut+C(q−1)et

Cost:

J=E n

(yt+k−wt)2+ρ(ut−ut−1)2o

Controller:

[BG+α(1−q−1)C]ut=Cwt−Syt

Design:

C=AG+q−kS α= ρ b0

G(0) = 1 ord(G) =k1 ord(S) =max(na1, nck)

Closed loop:

yt=q−k B

B+α(1−q−1)Awt+ BG+αC B+α(1−q−1)Aet

A S

(77)

GMV Control (Clarke-Gawthrop)

System:

A(q−1)yt=q−kB(q−1)ut+C(q−1)et

Cost:

J¯=E

[y˜t+k−w˜t]2+ρu˜2t

t=Hy(q)ytt=Hw(q)wtt=Hu(q)ut

Hy(q) =By(q−1)

Ay(q−1) Hu(q) = Bu(q−1)

Au(q−1) Hw(q) =Bw(q−1) Aw(q−1) Interpretation: Minimal Variance control of

ξt=By(q−1)

Ay(q−1)yt+q−k

αBu(q−1)

Au(q−1)ut−Bw(q−1) Aw(q−1)wt

α= ρ b0

Controller:

[AuBG+αCBu]ut=CAuBw

Aw

wt−SAu

Ay

yt

77 / 109

(78)

GMV

[AuBG+αCBu]ut=CAuBw

Aw

wt−SAu

Ay

yt

Design:

ByC=AyAG+q−kS α= ρ

b0

Closed loop: See book.

(79)

Reference Models - MV

2

yt close to ym(t) =q−kBm

Am

wt but what about the noise

PZ Control J=En

(Amyt+k−Bmwt)2o

yt=q−kBm

Am

wt+ G Am

et

Variation ofM V0Control:

J=En

(yt+k−Bm

Am

wt)2o

yt=q−kBm

Am

wt+Get

Yet another version J=E

n (Am

Bm

yt+k−wt)2o

yt=q−kBm

Am

wt+Bm

Am

Get

These have different noise characteristics.

79 / 109

(80)

M V

2

Control

System:

Ayt=q−kBut+Cet

Cost:

J=E nAe

Be

yt+k−AeBm

BeAm

wt

2o

Hy=Ae

Be

Hw=AeBm

BeAm

ρ= 0 Controller:

BGut=CBw

Aw

wt−S 1 Be

yt

Design:

AeC=BeAG+q−kS Closed loop:

yt=q−kBm

Am

wt+Be

Ae

Get

ut=ABm

BAm

wt− SBe

BAe

et

(81)

L13-15 in review

MV0(Minimum variance control) large control activity

only well damped zeros PZ (pole-zero-placement)

reduced requirement to the error (reference model) only well damped zeros

GSP (Generalized poleplacement controller) factorize B.

handle not well damped zeros

GMV (generalized minimum variance controller) weight on control activity

frequency weights or reference model(s) handle not well damped zeros

All based on a one step/instant horizon

GMV

81 / 109

(82)

End L15

Referencer

RELATEREDE DOKUMENTER

Chapter 2 provides the basic motivation of the work with a detailed literature survey on model predictive controllers with hard and soft constraints and control strategies for

Another approach presented by (Østergaard et al., 2008) propose linear param- eter varying control strategy, as an advanced gain scheduling method in order to control wind turbine

A novel system for semi-autonomous prosthesis control 10 Semi-autonomous Control of an Assistive Robotic Manipulator using Computer Vision 11 Tongue-based control interface for

The diagnostics are used to determine the current state of the herd with more precision, forming the basis for a decision of a control strategy for the disease. After a decision to

Keywords: Merger control, European competition policy, antitrust, enforcement problems, institutional economics, more economic approach, standard of

The reason why the max room temperature is lower with closed doors than with open doors in experiment 3 and 9 is that the control strategy here forces the windows

One of the innovation tasks (T1-I.4) is the smart meter case study with the objective of develop cheap units for control of a heat pump via smart meters capable of enabling the

The simulations showed how many heat pumps and electrical vehicles that could be deployed in the existing network in different control situations. Simulation with no control is