• Ingen resultater fundet

Local Energy Storage

N/A
N/A
Info
Hent
Protected

Academic year: 2022

Del "Local Energy Storage"

Copied!
25
0
0

Indlæser.... (se fuldtekst nu)

Hele teksten

(1)

Local Energy Storage

Rasmus Refshauge

(2)

EnergiMidt -

the future energy market

and information society

(3)

EnergiMidt was established in 2002 as a merger between 3 electricity companies –

MEF; ENCON; SE Energi

• We influence our local area by developing a sustainable, responsible and business efficient company

EnergiMidt is a co-operative - 100 % owned by the customers

EnergiMidt

(4)

Strategy 2015

We participate actively in developing the future energy market and information society.

EnergiMidt develops the future sustainable energy supply and information society in close cooperation with our customers and partners.

We offer our customers climate friendly and competitive solutions meeting their highest comfort and safety

requirements.

EnergiMidt’s value proposition

(5)

• FLUX A/S

(6)
(7)

Anlægs værter

(8)

The Local Energy Storage Project will develop a local power storage solution based on a new electronic power conversion and control concept and commercial batteries to enable higher production of grid connected renewable power and giving the user full advantage of own power production and simultaneously stabilize low voltage feeder lines.

LES Short description

(9)

Local Energy Storage

Why Local Energy Storage?

• To meet the future challenges for energy supply and stability

• Stabilize feeder lines in Low Voltage areas consumption/production

• Mitigate infrastructure investments

• Enable higher yield of Local Renewable Energy production

• Better business case for customers with RE production

(10)

View of energy flow overall

By curtesy of Energinet.dk

(11)

Energisystem i dag

(12)

Energisystem 2035 el og varmesystem 100% Vedvarende

(13)

Goal for 2050; 0kWh fossil energy production

 Impact on grid, both TSO and DSO

 DSO low voltage areas high impact due to increased local production

 High voltage in grid → faster degeneration of electrical

equipment

(14)

How big a problem?

The latest study from the Danish Energy Association shows that:

If power amounting to 5kW is installed on 40% of houses on

feeder lines with more than 5 houses. Approximately 13% of all

these feeder lines will experience that the power quality,

primarily the voltage will fall outside the requirements of 230 V

+/- 10% as set in the [DEFU rapport 579B].

(15)

Photovoltaic deployment Denmark

(16)

To overcome the grid problems there are several solutions

• Curtail the power output from the PV-plant – resulting in a loss for the PV-owner

• Generate reactive power instead of active power if there is a need in the grid – new reactive feed in tariff (FIT) has to be developed

• Consume the exceed energy that causes the voltage problems

• Upgrading the grid with thicker cables that can carry more load or installing new 10/0,4 kV transformers will lead to very high

expenses and also risky investments since the penetration of local energy production is rapidly growing and very hard to predict, you can easily calculate grid reinforcements that will only last a short period before problems in quality will arise again

Store the energy when it creates problems and consume when

needed

(17)

Possible locations of application in future

(18)

Best way to store?

(19)
(20)

Potential Turnover only for LES

13% of 634.700 national low voltage feeder lines is ~82,000 lines with app. 9kW stabilization power and app. 100kWh storage

capacity @2,000DKK/kWh) = 16.400MDKK Turnover

(21)

Rough Business Case

• Preliminary calculations on system payback with these boundary conditions:

• System owner saving 800kWh due to higher own consumption

• Lead acid battery cost app. 1,500DKK/kWh

• Power controls cost app. 1DKK/W

• 3,5 kWh of useable storage; that’s approximately 170 cycles

on battery and an estimate of equal sunny days [DMI, 1740

sun hours from 2001-2010 on average].

(22)

Following rough estimate of observations

Yr. FIT kWh Cost Savings/kWh

800 kWh Savings

Simple payback/yrs.

2013 1.3 2.12 0.82 652 11

2014 1.16 2.20 1.04 832 8

2015 1.02 2.29 1.27 1,014 7

2016 0.88 2.38 1.50 1,200 6

2017 0.74 2.47 1.73 1,388 5

2018 0.6 2.57 1.97 1,579 4

2019 0.6 2.68 2.08 1,661 4

2020 0.6 2.78 2.18 1,747 4

2021 0.6 2.90 2.30 1,836 4

2022 0.6 3.01 2.41 1,929 4

2023 0.6 3.13 2.53 2,025 3

2024 0.6 3.26 2.66 2,125 3

2025 0.6 3.39 2.79 2,229 3

(23)

Status To Date

Gantt diagram

Project title: Local Energy Storage Deliverable number

Energiteknologisk Udviklings-

Project start: 2015-01-01

og Demonstrations Program

Further detailed milestones & deliverables can be found in: Appendix 3 "Description of Work"

År

Work packages/Projektets arbejdspakker: J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J

WP0 – Project Management & Administration

Ta s k 0.1 Project coordi na ti on

Ta s k 0.2 Project conta ct poi nt & fa ci l i ta ti ng meeti ngs Ta s k 0.3 Project a dmi ni s tra ti on

Ta s k 0.4 Project reporti ng

WP1 –Market screening/mapping

Ta s k 1.1 – Technol ogy s creeni ng Ta s k 1.2 – Technol ogy ma p

WP2 – System Modeling

Ta s k 2.1 – Techni ca l i nputs a nd out puts Ta s k 2.2 – Economi c i nputs a nd out puts Ta s k 2.3 - Model l i ng

WP3 – Technical evaluation

Ta s k 3.1 – Pa ra meter s creeni ng

Ta s k 3.2 – Loa d/Producti on profi l e s creeni ng Ta s k 3.3 – Conceptua l s ys tem l a yout

WP4 – Development potentials

Ta s k 4.1 - Identi fi ca ti on of ba rri ers Ta s k 4.2 – Concept devel opment Ta s k 4.3 - Prototype devel opment

WP5 – Prototype/existing systems test sites

Ta s k 5.1 - Tes t a t cus tomer s i tes

Ta s k 5.2 - Da ta l og

WP6 – Dissemination & planning R&D and commercialization

Ta s k 6.1 - Securi ng Pa tent(s ) & pl a nni ng a ppl i ca ti on(s )

Ta s k 6.2 - Bus i nes s col l a bora ti on a greement(s ) on s uppl y of DC/DC converters a nd or s tora ge s ol uti ons Ta s k 6.3 - Commerci a l i za ti on pl a nni ng for Loca l Stora ge Sys tems i n 0.4 Ra di a l s

Ta s k 6.4 - Di s s emi na ti on of project res ul ts & networki ng

Milestones/Milepæle

TM0.1 - Project ended & reports del i vered TM1.1 - Fi na l ma rket report

TM2.1 - Loca l Energy Stora ge Model TM2.2 - Opti mi zed Loca l Energy Stora ge Model TM3.1 - Sys tem l a yout defi ned for fi rs t prototype TM4.1 - Prototype

Commercial milestones/Kommerc. milepæle

CM5.1 - Purcha s e order prototype - Ski ve

CM5.2 - Purcha s e order prototype - Mi ddel fa rt CM5.3 - Purcha s e order prototype – Pri va te hous ehol ds CM5.4 - Letter of i ntent from cos tumers

CM6.1 - Pa tent(s ) i denti fi ed & a ppl i ca ti on(s ) i ni ti a ted CM6.2 - Bus i nes s col l a bora ti on a greement

CM6.3 - Bus i nes s pl a n a nd s tra tegy for depl oyment of ba ttery s ys tems for gri d s ta bi l i za ti on (gri d uti l i ti es )

CM6.4 - Bus i nes s pl a n a nd s tra tegy for depl oyment of ba ttery s ys tems for opti mi zi ng s ys tem owners economy (pri va te a nd i ndus tri a l s ys tem owners )

2015 2016 2017 2018

0.2 0.2 0.2 0.2 0.2

0.1 0.2 0.2 0.2

0.3

0.2 0.2 0.2 0.2 0.2 0.6

0.7 n.n

1.1 1.2

1.3

2.1

2.2 2.3 2.4 2.5 2.6

3.1 3.2

4.1

4.2 4.3 4.4

5.1 5.2

5.3

5.4 5.5

6.1

6.2

6.3

0.4 0.5

(24)

PV Bat

Installeret Effekt/kapacitet 7,2 4 kWp/kWh Kr/kWh

Total Pris for installation 72.000 15.467 DKKR 3.867 Batt. Sys PV 37gAz0 Bat. 37gAz0

Forbrug af egenproduktion 30% 43% 47% 33% 9.216 7.670

Feed in tarif første 10år 0,6 DKKR/kWh mer besparrelse 14% 1.547 p.a.

Markeds pris efter 10 år 0,40 DKKR/kWh 0%

kWh pris 2,4 DKKR/kWh

kWh udvikling 4%

Skaleret elforbrug 100% Sys Bat. PV 37gAz0 37gAz0

Solcelle degradering p.a. 0,35% 7,1 10,0 7,0 6.695

Planlagt Service årligt 2,3% Solgt til net

Standby forbrug 0,4 kWh 3806 kWh

Anbefalet Batteri 3 kWh Forbrug fra Batt

DOD 80% 859 kWh

Life time 10 1547 indtjent af battteri

Kunde el forbrug 6.163 kWh 3867 kWh target pris

Summeret indtjening 10år 107.116 DKKR Summeret indtjening 25år 328.566 DKKR

Max sol produktion 6.695 kWh P.a.

El Besparelse 47%

Maximal indtjening 9.216 DKKR P.a.

Solgt til net 3806 kWh Intern rente 17,13%

Forrentning 25år 5,69%

estimeret antal Moduler 36 stk (1,28m2/modul) Areal ~ 46 m2

Hovedstol 0

Rente p.a. 0%

Teknisk levetid 25

Disclaimer:

Data er fo r standart so lår o g vil derfo r afvige fra faktuelle målinger Øko no miske beregninger skal tages med fo rbeho ld

o g kun bruges so m estimerede værdier

Indtjening år 1

ROI kWh produktin p.a.

El besparelse

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

-100.000 -50.000 0 50.000 100.000 150.000 200.000 250.000 300.000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ROI PV produktion (sekundær)

El besparelse (sekundær) El indtjening (sekundær)

PVSolve_Batt

(25)

Referencer

RELATEREDE DOKUMENTER

Battery Energy Storage Systems- results from a project between Vestas, Energi Danmark and Danish Technological Institute. Johan Hardang Vium, consultant Danish

The technologies discussed here are pumped hydroelectric energy storage (PHES), compressed air energy storage (CAES), sodium-sulfur batteries (NaS), lead-acid batteries,

The present paper is based on a case study focussing at Albena tourist resort in Bulgaria to design and develop a potential Mobile Thermal Energy Storage (M-TES) system for waste

Energy storage in fossil fuel is a energy source generate over millions of years.. When talking about renewable energy, is should be a

The FCSPP includes fuel storage, a fuel cell system, an energy storage device, power electronics, an electric machine, and the necessary control.. The FCSPP therefore converts

Ultra-capacitor, fuel cell, battery, flywheel, and SMES are the energy storage technologies, which have been particularly used in wind energy for power smoothing

For industry, two energy balances were created: the primary one which proportioned national consumption to the local region based on the number of jobs in the region and a second

The overall requirements for the normal operating range of active power in the event of fre- quency and voltage deviations for an energy storage facility in the point of connection are