• Ingen resultater fundet

EI 1 EI 2 EI 3

N/A
N/A
Info
Hent
Protected

Academic year: 2022

Del "EI 1 EI 2 EI 3"

Copied!
12
0
0

Indlæser.... (se fuldtekst nu)

Hele teksten

(1)

Ground Penetrating Radar Data

Brian Karlsen a

, Helge B.D. Srensen a

, JanLarsen b

and Kaj B. Jakobsen a

a

rstedDTU,Technical University of Denmark

rsteds Plads, Building348, DK-2800 Kongens Lyngby, Denmark

b

Informatics and MathematicalModelling,Technical University of Denmark

RichardPetersens Plads, Building321, DK-2800 Kongens Lyngby, Denmark.

ABSTRACT

StatisticalsignalprocessingapproachesbasedonIndependentComponentAnalysis(ICA)algorithmsforclutter

reductionin Stepped-FrequencyGroundPenetratingRadar(SF-GPR)dataarepresented. Thepurposeofthe

clutter reduction is indirectly to decompose the GPR data into clutter reducedGPR data and clutter. The

experimentsindicate thatICAalgorithmscandecomposeGPRdataintosuitablesubspacecomponents,which

makesitpossibleto selectasubset of components containingprimarily target information(likeanti-personal

landmines) and others which contain mainly clutter information. Thepaper compares spatial and temporal

ICA approachesoneld-testdatafrom shallowburiediron andplastic anti-personallandminedummies. The

data areacquired using amonostaticbow-tie antennaoperatingin thefrequencyrange from 500MHzto 2.5

GHz.

Keywords: Anti-personal landmine detection, ground penetrating radar, independent component analysis,

statisticalsignalprocessing,clutterreduction.

1.INTRODUCTION

The Ground PenetratingRadar (GPR) is widelyused in the application of detection of landmines. The ad-

vantage of using a GPR is given by the fact that a GPR is able to detect buried objects in the received

electromagneticeldsscatteredfromtheground. This propertymakestheGPRabletodetectlandmines,and

inparticularanti-personallandminesofplasticwithalowcontentofmetal 1,2

. Mostly,thosekindsoflandmines

are buried close to the surface of the ground, where the detection of objects is very weak due to the strong

clutterscatteringfromthegroundsurface. Clutter hampersthedetectionofthelandminesandthereforegives

a signicant problem for automatic landmine detection systems. In general, the clutter that eects a GPR

canbedened asthose signalsthat areunrelatedtothetargetscatteringcharacteristicsbut occupythesame

frequencybandas thetargets. Clutter canbecausedbymultiplereections,e.g.,intheantenna,betweenthe

antennaandthegroundsurface,and thenon-minetargetsburiedintheground. However,onthedetectionof

shallowburiedlandminesthegroundsurfaceclutteristhestrongestandmostsignicantclutter. Toincreasethe

detectionof shallowburiedobjectsitis thereforenecessaryto deploypropergroundsurfaceclutterreduction

methodsontheGPRsignalstoenhance thedetectionofshallowburiedlandmines.

Theliteraturesuggestsanumberofclutterreductionmethods,suchaslikelihoodratiotesting 3

,parametric

systemidentication 4{7

, waveletpacket decomposition 8,9

, subspacetechniques 10{14

,andsimplemeansubtrac-

tion 1

. However,manyofthese failtodetectshallowburiedlandmines,mostlybecauseofthestatistical nature

of theclutter, e.g.,the groundsurfaceis not perfectly at or evenrelativesmooth. Another problem isthat

manyofthemethodsusereferencesignalestimatesofthesignatureofalandmine. These referencesignalsare

usedto removesignalthat areunrelatedtothereference. However,atargetsignalwhich haslittlecorrelation

withthereferencesignalsmaynotbedetected,hence,beclassiedasclutter.

Further author information on: BK: brk@oersted.dtu.dk, www.oersted.dtu.dk; HBDS: hbs@oersted.dtu.dk,

www.oersted.dtu.dk;JL:jl@imm.dtu.dk,www.imm.dtu.dk/~jl;KBJ:kbj@oersted.dtu.dk,www.oersted.dtu.dk

(2)

To reduce the clutter we havesuggested another promising approach basedon decomposition of the

GPR signalsinto clutter and landmine signalsusing Principal Component Analysis (PCA) and Independent

Component Analysis (ICA). In this work we focus on reducing the ground surface clutter using statistical

unsupervisedlearningmethods basedonspatialand temporalICA. ThebasicideausingICAisto decompose

thereceivedGPR signalsinto subspacesof cluttersignalsand landminesignals,respectively. Previouswork 12

addressedtheuseoftemporalICA only.

In this paper we extent the work by considering spatial ICA and more elaborate experimental studies.

Section 2presentsthespatial and temporalICA basedclutter reductionmethods and section3 describesfor

selectingofrelevantICAcomponents. Finally,section4providesacomparativestudyofthepresentedmethods,

which aretested onGPR-datacollectedatanindoorGPRmeasurementfacilityattheTechnicalUniversityof

Denmark.

2.CLUTTER REDUCTION USING INDEPENDENT COMPONENT ANALYSIS

To reduce the clutter in the GPR data we focus on unsupervised statistical methods based on spatial and

temporal Independent Component Analysis (s-ICA and t-ICA). The s-ICA and t-ICA method are twocom-

plementary waysto subspacedecompose a multi-channel signalinto a set of weightingvectors(eigenimages)

and aassociated set oftime signalsusing ICA 15{17

. The s-ICAand t-ICA method are inspiredbyarecently

suggestedclutterreductionmethodbasedonPrincipalComponentAnalysis(PCA 11,12

). Thes-ICAandt-ICA

method for clutter reductionresemblesthat of the PCA method. Themajor dierence is that thesubspace

formed by ICA is not orthogonal as in PCA. Moreover, the independent components (IC's), which are the

counterparts of the Principal Components (PC's), are statistically independent. We thus expect the IC's to

haveamoredistincttimeandspatiallocalization. Fromrecentlypresentedwork 12

,t-ICAclearlyshowsamore

distinct time localization than PCA. Briey, the s-ICA and t-ICA basically decomposes GPR signals into a

set ofeigenimagesand associatedtimesignals. Thes-ICA ndsindependent eigenimagesandaassociatedset

of time signals,whereas thet-ICA nds independent timesignals anda associated set of eigenimages. From

thes-ICAandt-ICA, clutterreductionisthenobtainedbyselectingcomponents,which containlandmine-like

signaturesonly.

ToemploytheICAsubspacedecompositionmethodsontheGPRdata,asignalspacemustbedened. The

space observed is spanned by the multi-channel GPR time-domain signalsas expressed by the signalmatrix

X 2R PN

expressedby

X=fX

p;n g=fx

p

(n)g=fx

i;j

(n)g=[x(1);x(2);;x(N)]; (1)

wherePisthenumberoftime-domainsignals,whicharereceivedbyscanningtheGPRabovethegroundsurface

in thex-and y-direction,N isthenumberofsamplesin eachofthe receivedtime-domainsignals,andx

i;j (n)

isthetime-domainsignalreceivedattheantennalocatedatposition x;y

= x =(i 1)4x;y =(j 1)4y

,

where i= 1;2;;I, and j = 1;2;;J. 4x and 4y are the antenna location step size in the x- and y-

direction, respectively, and p = i+(j 1)I. I and J is the number of antenna locations in the x- and

y-direction,respectively. Ingeneralweexpect thatthemeanvalueof X is equalzero, EfXg=0. Hence,we

mayredenex

p

(n)tox

p (n)=x

i;j

(n),where

x

p (n)=x

i;j (n)=x

i;j (n)

1

IJ I

X

i=1 J

X

j=1 x

i;j

(n); p=i+(j 1)I; i2[1;I]; j2[1;J]; p2[i;JI] (2)

That is, in the signal matrix X, i.e., x

p

(n), n = 1;2;;N, is the p'th received time-domain signal, orin

practice,thep'threceivedtime-domainsignalsubtractedby themean valueoftheensembleofreceivedtime-

domainsignals. Equation2isalsoknownasthemean-subtractionclutterreductionmethod 1

.

PCA.Inordertocompareandinordertoprovideatreducedrankdataset 19,20

asinputtothes-ICAand

t-ICA,werstemploythePCAonthedataset. PCAwasexecutedusingsingularvaluedecomposition(SVD),

X =UDV

>

= N

X

u

i D

i;i v

>

i

; X

p;n

= N

X

U

p;i D

i;i V

n;i

(3)

(3)

p;i 1 2 N n;i 1 2 N

representorthonormalbasisvectors,i.e.,eigenvectorsofthesymmetricmatricesXX T

andX T

X,respectively.

D=D

i;i

isanN N diagonalmatrixofsingularvaluesrankedin decreasingorder,asshown byD

i 1;i 1

D

i;i

;8i 2 [2;N]. The SVD identies a set of uncorrelated time signals, the principal components (PC's):

y

i

=D

i;i v

i

, enumeratedbythe componentindex i =1;2;:::;N and y

i

=[y

i

(1);;y

i (N)]

>

. That is, from

the PCA we canwrite the observedsignalmatrix asaweighted sumof xed eigenvectors(eigenimages), u

i ,

that oftenlendthemselvesintodirect interpretation. ThePC'sand theeigenimagesareused asinputstothe

t-ICA ands-ICA,respectively. ThedimensionofthePCA dataset willbedN. That is, wemodelX only

fromnon-zeroeigenvalues 20

.

Temporal ICA.t-ICAembodiestheassumptionthateachPC,y

i

,isalinearcombinationofM temporal

independenttime signals,the IC's. The t-ICA isprocessed in twosteps. First,X is projected toasubspace

spannedbyM,M d,selectedPC's.,e.g.,therstM PC's. Thatis,Y = e

U

>

X,where e

U =[u

1

;u

2

;;u

M ]

andY isanMN matrix,Y =[y

1

;y

2

;;y

m ]

>

. Hence,thet-ICAproblemisdened as

Y =A

t S

t

; (4)

whereA

t

istheMM matrixofmixingcoeÆcientsandS

t

istheMN matrixofindependenttimesignals,

(IC's). Secondly, the mixing matrix, A

t

, and the matrix of independent time series, S

t

, are estimated 16,17

.

The original signal matrix is reconstructed as b

X = W

t S

t

= P

M

i=1 w

ti s

ti

, where W

t

= e

UA

t

is the matrix

of eigenimages. s

t

i

=[s

t

i

(1);;s

t

i

(N)] and w

t

i

=[w

t

i

(1);;w

t

i (P)]

>

is thei'th independent timesignal

and associated eigenimage, respectively. Fromthe t-ICA clutter reductioncanthen beobtained byselecting

componentswhichmainlycontainlandmine-likesignaturesandthenreconstructthesignalmatrix, b

X. Amore

detaileddescriptionofthisprocedure isgiveninSection3.

SpatialICA.s-ICAembodiestheassumptionthateacheigenimage,u

i

,iscomposedofalinearcombination

of M spatially IC eigenimages. Thes-ICA isdone in twosteps. First isX projectedto a subspacespanned

byM selectedPC's.,e.g.,therstM PC's,i.e.,similar tothet-ICA,where wegetY andhave e

U. Then,the

s-ICAproblemisdened as

e

U

>

=A

s S

s

; (5)

whereA

s

istheMMmatrixofmixingcoeÆcientsandS

s

istheMP matrixofindependenteigenimages,

IC's. Secondly,themixingmatrix,A

s

,andthematrixofindependenteigenimages,S

s

,areestimated 16,17

ina

similarwayasforthet-ICA.Theoriginalsignalmatrixisreconstructedas b

X

>

=W

s S

s

= P

M

i=1 w

s

i s

s

i ,where

W

s

=YA

s

isthematrixoftimesignals. s

s

i

=[s

s

i

(1);;s

s

i

(P)]andw

s

i

=[w

s

i

(1);;w

s

i (N)]

>

isthei'th

independenteigenimageandassociatedtimesignal,respectively. s-ICAclutterreductionresemblesthatofthe

t-ICAclutterreduction(referto Section3).

But how do we get A

s , A

t , S

s and S

t

? The literature provides a number of algorithms for estimating

theA mixing matrixand theS sourcematrix

. Basicallytheycanbedividedinto twofamiliesin which the

rstdeployhigher(or lower)order momentsofnon-Gaussiansources, whereastheotherfamilyuses thetime

correlation of the source signals. In the present casewe expect that the sources are bothnon-Gaussian and

colored. Wedeployamemberfromtherst family: thewidelyused Bell-Sejnowski 16

algorithmusing natural

gradientlearning.

3.SELECTION OF COMPONENTS AND RECONSTRUCTION

Theclutterreductionisobtainedbyselectingcomponentsthathavelandmine-likesignaturesonly. Thefeatures

we canbase ourselectionon aretemporalfeatures and spatial features. Wesuggestthree selectionmethods,

which arebasedontemporalfeatures,spatialfeatures,and combinedtemporalandspatialfeatures.

Temporal Features: selecting components only using information from W

s and S

t

. Considerthe pro-

jection onto the subspace spanned by K selected time signals which mainly contain information about the

Foraresentreviewthereaderisreferredto 21

.

(4)

landmine object, i.e., W

t

= X e

S

>

t ,

e

S

t

= [s

ti

1

;s

ti

2

;;s

ti

K ]

>

for the t-ICA, and S

s

= f

W

s X

>

, f

W

s

=

[w

si

1

;w

si

2

;;w

si

K

]forthes-ICA. Theselectionofthecomponentscanbedonebyinspectingthetimesig-

nalsonly. Ifweknowwerethegroundsurfaceislocatedintime,wethenremovethosetimesignalcomponents

thatpeaksbeforeandatthegroundsurface. TheclutterissubsequentlyreducedbyreconstructingXfromthe

subspaceas givenby

b

X =W

t e

S

t

; b

X

>

= f

W

s S

s

(6)

fort-ICAands-ICA, respectively.

Spatial Features. Selecting components only using information from W

t and S

s

. Consider the pro-

jection onto the subspace spanned by K selected eigenimages which mainly contain information about the

landmine object, i.e., S

t

= f

W

>

t X,

f

W

t

= [w

ti

1

;w

ti

2

;;w

ti

K

] for the t-ICA, and W

s

= X

>

e

S

>

s ,

e

S

s

=

[s

s

i

1

;s

s

i

2

;;s

s

i

K ]

>

for thes-ICA. Theselection of thecomponentscanbedoneby inspecting theeigenim-

ages only. We then remove those components that show no spatial landmine-like signatures. The clutter is

subsequentlyreducedbyreconstructingX from thesubspaceasgivenby

b

X = f

W

t S

t

; b

X

>

=W

s e

S

s

(7)

fort-ICAands-ICA, respectively.

Spatial Temporal Features. Selecting components only using information from W

s and S

t , W

t , and

S

s

. That is,selectionofcomponentsthat showsbothtemporalandspatial landmine-likesignatures. Consider

a subspace spanned by K components asin the spatial and the temporal feature selection methods. Then

weselectcomponentsthat showlandmine-likesignaturesin botheigenimagesandtimesignals. Theclutter is

subsequentlyreducedbyreconstructingX from thesubspaceasexpressedbyequation6and7.

TheoverallobjectiveoftheICAmethodsisautomaticdetectionofthelandminesbyautomaticselectionof

thecomponentsbasedonW

s ,S

s ,W

t ,andS

t

. However,thisworkisdoneonaverysmalldataset. Therefore,

theselectionofthecomponentsis donebyvisualinspectionofeigenimagesandtimesignals.

4.CASE STUDY: M56 IRON AND PLASTIC LANDMINE DUMMIES

Thecomparativestudyof thet-ICAand s-ICAmethods forclutterreductionin GPRdatawasperformedon

eld-testStepped-FrequencyGPR data. Theeld-testdata wascollectedusing amonostaticbow-tie antenna

operatinginthefrequencyrangefrom500MHzto2.5GHz. ThedatawasacquiredusingaHP8753Anetwork

analyzer. Thebandwidthoftheantennadeterminestheresolution,whichisapproximately7.5cminfree-space.

Thefrequency-domain data wasFouriertransformedto the time-domainusing asampling frequencyof 10.24

GHz,whichcorrespondstoafree-spacesamplingof2.9cminthedepthdirection,whichisbelowtheresolution

setbytheantennabandwidth. Inameasurementareaof126cm90cmM56landminedummiesofironand

plastic (lledwith bees wax) were buriedin thecenteroftheeld in relativewet soil5cm belowthesurface.

Thedimension ofthelandmine dummiesare: diameter 5.4 cm,and height4cm. The measurementareawas

scannedsoeveryantennapositionswerelocated(4x=1cm)(4y=1cm)fromeachother.

In Figure 1 and Figure 2 are the PCA results shown. The Figures show the rst M = 21 eigenimages,

u

i

, i = 1;2;:::;M, and associated PC's, y

i

, i = 1;2;:::;M, for the iron dummy and the plastic dummy,

respectively. In totalwegotd=24andd=23eigenimagesandassociatedPC'sfor theirondummy andfor

theplasticdummy,respectively. However,thelasteigenimagesandPC'sshowsonlynoise-liketextures,asalso

are shown from therst 21eigenimagesand PC's due to thefact that the latereigenimagesand PC's shows

noise-liketextureonly. All thecomponentsaresortedaftervariance. Thatis, therstcomponentcontributes

mostto X, where as thelast componenthasthe lowest contribution to X. The varianceisgivenbyD

i;i for

thei'th component. Forthe signalmatrix,X, wehaveP =12791=11557antennapositions. Thatis, P

receivedtime-domain signalsatP locations. Thenumberof samples, N, was62. Theeigenimagesand PC's

areusedasinputstothes-ICAand t-ICAmethods.

ThePCAendupwithadatasetofdimensiond=24andd=23fortheironandplasticdummy,respectively.

(5)

rathercomplex. Thesolutiontothis istocompress theinformationinto fewercomponents. That is,havinga

subspacedecompositionmethodthatisabletolowerthedimensionofthedatasetwithoutloosinginformation,

e.g., asubspacedecomposition method that seeks themost optimaldimension. However, theBell{Sejnowski

ICA (BS-ICA)is notableto reduce thedimension ofthedata set in that way. Therefore, one way to reduce

thenumberofdimensionsistoreduce thenumberofinputs,withthecostof information. Inorderto seehow

theICA performsonsmallersubspaces,e.g.,isitpossibletocompress thelandmine-likesignaturesinto fewer

components, the t-ICA and s-ICA were tested on subspaces using the rst M = 15, M = 10, and M = 5

eigenimages,u

i

,andassociatedPC's, y

i

. TheseeigenimagesandPC'swere selecteddue tothefact thatlater

eigenimagesand PC's than M = 15 showsonly clutter-like signatures and that the contribution from those

componentsin X issmall(lowvariance).

InFigure3andFigure4areshowntherst12componentsfromthet-ICAands-ICAusingtherstM=15

PC's, e

Y =[y

1

;y

2

;;y

15 ]

>

, asinput to thet-ICA and rstM =15 eigenimages, e

U =[u

1

;u

2

;;u

15 ], as

inputtothes-ICA.InFigure3someoftheeigenimagesoftheirondummyexperimentsshowsstronglandmine-

signatures, inparticular eigenimagenumber5and 6forthet-ICA andnumber6forthes-ICA. However,the

signaturesaremoreclearlypronouncedforthes-ICA.Further,fewereigenimagesforthes-ICAshowslandmine-

likesignatures. Thatis,thet-ICAspreadthelandmineinformationoutinmanycomponents,whereasthes-ICA

is ableto compress theinformation in to few components. Thetime signalsshowsbetter localization forthe

t-ICA than for thes-ICA. That is, for the t-ICA theeigenimages canbe associatedwith aparticular depth.

From theresultsit isshown that thet-ICA providesabettertime separation,whereasthes-ICA provides at

betterspatialseparation. FortheM56plasticdummyresults,shownin Figure4,similarresultsareobtained.

However,thelandmine-signatureislesspronouncedduetothelowscatterfrom thelandmine.

In Figure 5to Figure 7arethe resultsof theclutter reductionshown. Theimages showsthe totalpower

oftherst30samplesofthereceivedGPRtime signalat eachantennalocation. That is, b

X

ppow

= P

L

n=l

^ x 2

p;n .

The power is calculated using a rectangular window of size L = 30. By using the window size L = 30, we

covertheareafrom theinputof theantennato approx.20 cmunder thegroundsurface. Fromthe resultsin

general it is clearthat theselection method based on combined spatial and temporal features givesthe best

performance, particular when choosing M = 15 components. It is also shown that the t-ICA has a better

performancethanthes-ICA, whenusing onlytemporalfeatures, andthes-ICA hasbetterperformance when

usingonlyspatial features. Thisistrueforboththeirondummyandplastic dummy. Howeverfortheplastic

dummythebest resultisobtainedwhenchoosingasubspaceofM =5components. Whytheperformanceis

poorat small subspacesmay befound in thesimple way we selectthe inputsto the s-ICA and t-ICA. From

Figure1andFigure2itisclearthatmostofthelandmineinformationisin component5to12. Byremoving

those components, which we do when we select the rst M = 5components, we will loose information. In

Figure6andFigure7aremeshplotsshown,theyclearlyshowsthattheclutterisreducedintheGPRdata.

5.CONCLUSION

ThispaperprovidedacomparativestudyofspatialandtemporalICAforclutterreduction. TheICAmethods

were based on the Bell{Sejnowski ICA. From the results we havethat the t-ICA provides more peaky time

signalsthanthes-ICA,duetothefactthat thet-ICA givesindependenttimesignals. Hence,thet-ICAshows

betterperformanceintimelocalization.However,s-ICAshowsmorelandmine-likeeigenimagesthanthet-ICA,

due to the fact that the eigenimagesare independent in the s-ICA. Hence, s-ICA showsbetter performance

in spatiallocalization. Threecomponentselectionmethods weresuggestedandcompared. Theywere baseon

temporal featureselection,spatialfeature selection,andcombinedspatialandtemporalfeatureselection. The

combinedshowedbestperformance. Thatis, thebestclutterreductionisobtainbyselectingcomponentswere

botheigenimagesand associatedtime signalsshowslandmine-like signatures. Futurestudies will concentrate

onICA methodsbasedonbothspatialandtemporalfeaturesandmethodsforautomaticcomponentselection.

6.ACKNOWLEDGEMENT

We thankOleNymann forenthusiastic andsteady support of our work in humanitarianlandmine detection.

(6)

1. D.J.Daniels: SurfacePenetrating Radar,IEE,1996.

2. H.B.D. Srensen, K.B. Jakobsen and O. Nymann: \Identication of mine-shaped objects based on an

eÆcientphasestepped-frequencyradarapproach"in Proc. IEEE ImageProcessing 1997,3,142-145.

3. H. Brunzell: \Clutter Reduction and Object Detection in Surface PenetratingRadar," in Proc. of IEE

Radar'97,issue449,1997, pp.688{691.

4. J.W. Brooks, L. van Kempen & H. Sahli: \Primary Study in Adaptive Clutter Reduction and Buried

Minelike Target Enhancement from GPR Data," in Proc. of SPIE, AeroSense 2000: Detect. and Rem.

Techn. for Mines andMinelike TargetsV, vol.4038,2000,pp.1183{1192.

5. L.van Kempen,H. Sahli,E.Nyssen&J.Cornelis: \SignalProcessingand PatternRecognitionMethods

for Radar AP Mine Detection and Indentication," Detect. of Aband. Land Mines, no. 458, pp. 81{85,

1998.

6. A. van der Merwe & I.J. Gupta: \A Novel Signal Processing Techniquefor Clutter Reduction in GPR

MeasurementsofSmall,ShallowLandMines,"IEEETransactions onGeoscienceandRemoteSensingvol.

38,no.6,Nov.2000,pp.2627{2637.

7. J.L. Salvati,C.C.Chen &J.T. Johnson: \TheoreticalStudyofaSurfaceClutter ReductionAlgorithm,"

inProc. of1998 IEEEInternational Geoscience andRemoteSensing,vol.3,1998,pp.1460{1462.

8. D.Carevic: \ClutterReductionandTargetDetectioninGroundPenetratingRadarDataUsingWavelets,"

in Proc. of SPIE Conf. on Detect. and Rem.Techn. for Mines andMinelike Targets IV,vol.3710, 1999,

pp.973{97.

9. H. Deng & H. Ling: \Clutter Reduction for Synthetic Aperture Radar ImagesUsing Adaptive Wavelet

PacketTransform,"inProc. of IEEEInt.Ant.andPropaga. Soc.Symp., vol.3,1999,pp.1780{1783.

10. A.H.Gynatilaka&B.A.Baertlein: \AsubspacedecompositiontechniquetoimproveGPRimagingofanti-

personnel mines," in Proc. of SPIE, AeroSense 2000: Detect. and Rem. Techn. for Mines and Minelike

Targets V,vol.4038,2000,pp.1008{1018.

11. B.Karlsen,J.Larsen,K.B.Jakobsen,H.B.D.Srensen&S. Abrahamson: \AntennaCharacteristicsand

Air-GroundInterfaceDeembedding MethodsforStepped-Frequency GroundPenetratingRadarMeasure-

ments," in Proc. of SPIE, AeroSense 2000: Detect. and Rem. Techn. for Mines and Minelike Targets V,

vol.4038,2000,pp.1420{1430.

12. B.Karlsen,J.Larsen,H.B.D.Srensenand K.B.Jakobsen: \ComparisonofPCAandICA basedClutter

Reductionin GPRSystemsforAnti-PersonalLandmineDetection," inProc. of 11thIEEE Workshop on

Statistical SignalProcessing, Singapore,Aug.6{8,2001,pp.146{149.

13. A.K. Shaw&V. Bhatnagar: \Automatic Target RecognitionUsing Eigen-Templates," in Proc. of SPIE

Conferenceon Algorithms for SyntheticApertureRadar ImageryV,vol.3370,1998,pp.448-459.

14. S.H.Yu & T.R.Witten: \AutomaticMine Detectionbased onGround PenetratinigRadar,"in Proc. of

SPIE Conference on Detect. and Rem. Techn. for Mines and Minelike Targets IV, vol. 3710, 1999, pp.

961{972.

15. P.Comon: \IndependentComponentAnalysis: ANewConcept,"Sig. Proces.,vol.36,pp.287{314,1994.

16. A.Bell&T.J.Sejnowski: \AnInformation-Maximation Approachto BlindSeparationand BlindDecon-

velution,"Neural Computation, vol.7,pp.1129{1159,1995.

17. L.Molgedey&H.Schuster: \SeparationofIndependentSignalsusingTime-DelayedCorrelations,"Physical

ReviewLetters,vol.72, no.23,pp.3634{3637,1994.

18. L.K.Hansen,J.Larsen&T.Kolenda: \OnIndependentComponentAnalysisforMultimediaSignals,"in

L. Guan, S.Y. Kung&J. Larsen(eds.) Multimedia Image and Video Processing, CRC Press, Ch.7, pp.

175{199,2000.

19. L.K.Hansen,J.Larsen&T.Kolenda: \BlindDetectionofIndependent DynamicComponents,"in Proc.

IEEEICASSP'2001, SaltLakeCity,SAM-P8.10,vol.5,2001.

20. B.Lautrup,L.K.Hansen,I.Law,N.Mrch,C.Svarer&S.C.Strother: \Massiveweightsharing: ACure

forExtremelyIll-posedProblems,"inH.J.Hermanetal.,(eds.)Supercomputingin BrainResearch: From

Tomography toNeuralNetworks,WorldScienticPub.Corp. pp.137{148,1995.

21. T.W.Lee: IndependentComponentAnalysis: TheoryandApplicationsKluwerAcademicPublishers,ISBN:

(7)

Eigenimages Principal Components

EI 1 EI 2 EI 3

EI 4 EI 5 EI 6

EI 7 EI 8 EI 9

EI 10 EI 11 EI 12

EI 13 EI 14 EI 15

EI 16 EI 17 EI 18

EI 19 EI 20 EI 21

1 2 3

0.5 1 1.5 2

x 10 −3

S 1

1 2 3

2 4 6 8 10 12 14

x 10 −4

S 2

1 2 3

0.5 1 1.5 2 2.5

x 10 −4

S 3

1 2 3

5 10 15

x 10 −5

S 4

1 2 3

1 2 3 4 5

x 10 −5

S 5

1 2 3

2 4

x 10 −5

S 6

1 2 3

0.5 1 1.5 2

x 10 −5 S 7

1 2 3

5 10 15

x 10 S 8 −6

1 2 3

2 4 6 8

x 10 −6 S 9

1 2 3

2 4

x 10 S 10 −6

1 2 3

1 2 3

x 10 S 11 −6

1 2 3

5 10 15

x 10 S 12 −7

1 2 3

2 4 6 8 10

x 10 S 13 −7

1 2 3

2 4 6

x 10 S 14 −7

1 2 3

1 2 3 4 5

x 10 S 15 −7

1 2 3

1 2 3 4 5

x 10 S 16 −7

1 2 3

1 2 3

x 10 S 17 −7

1 2 3

2 4 6 8 10 12

x 10 S 18 −8

1 2 3

2 4 6

x 10

S 19 −8

1 2 3

2 4 6 8

x 10

S 20 −8

1 2 3

1 2 3

x 10

S 21 −8

Figure 1. Eigenimages (xy-plane), ui, and associated PC's, y

i

, for the M56 iron dummy. Only the rst M = 21

eigenimages and associated PC's are shown. It should be noticed that it is the power of the PC's that are shown.

Thepower iscalculated usinga non-causalKaiser windowof size 3with thecharacteristic parameterset to2. The

eigenimages shows verystronglandmine signaturesinafew eigenimages, e.g., eigenimage5and 6,andthe associated

PC'salsopeaksinadepthcorrespondingtotheburieddepth(1.8nanosec.). Eigenimage1,2,and3andassociatedPC's

showsstronggroundsurfacesignature. Theeigenimagesshowsthevariationsintheground surfaceand theassociated

PC'speaksatthegroundsurface(1.0nansec.). TheremainingeigenimagesandPC'sshowsmoremixedclutter-landmine

signals. However,theyhavemuchlesspower. Itisclearthattheseparationintimeispoor. TheeigenimagesandPC's

areusedasinputstothes-ICAandt-ICA.

(8)

Eigenimages Principal Components

EI 1 EI 2 EI 3

EI 4 EI 5 EI 6

EI 7 EI 8 EI 9

EI 10 EI 11 EI 12

EI 13 EI 14 EI 15

EI 16 EI 17 EI 18

EI 19 EI 20 EI 21

1 2 3

0.5 1 1.5 2

x 10 −3

S 1

1 2 3

2 4 6 8

x 10 −4

S 2

1 2 3

0.5 1 1.5 2 2.5

x 10 −4

S 3

1 2 3

5 10 15

x 10 −5

S 4

1 2 3

1 2 3 4 5

x 10 −5

S 5

1 2 3

1 2 3

x 10 −5

S 6

1 2 3

0.5 1 1.5 2

x 10 −5 S 7

1 2 3

2 4 6 8 10 12 14

x 10 S 8 −6

1 2 3

2 4 6

x 10 −6 S 9

1 2 3

2 4

x 10 S 10 −6

1 2 3

1 2 3

x 10 S 11 −6

1 2 3

0.5 1 1.5 2

x 10 S 12 −6

1 2 3

2 4 6

x 10 S 13 −7

1 2 3

2 4 6

x 10 S 14 −7

1 2 3

2 4 6

x 10 S 15 −7

1 2 3

1 2 3 4 5

x 10

S 16 −7

1 2 3

1 2 3

x 10

S 17 −7

1 2 3

2 4 6 8 10 12

x 10

S 18 −8

1 2 3

2 4 6

x 10

S 19 −8

1 2 3

2 4 6 8

x 10

S 20 −8

1 2 3

1 2 3

x 10

S 21 −8

Figure 2. Eigenimages(xy-plane),ui,andassociatedPC's, y

i

,fortheM56 plasticdummy(lledwithbeeswax). As

fortheM56irondummy,itisonlytherstM =21eigenimagesandassociatedPC'sthatareshown. Againitshouldbe

noticedthatitisthepowerofthePC'sthatareshown. Thepoweriscalculatedusinganon-causalKaiserwindowofsize

3withthecharacteristicparametersetto2. Duetotheweakscatteringfromtheplasticdummytheeigenimagesshows

veryweaklandmine signatures. However,eigenimage5and6showslandminesignatures, andtheassociatedPC's also

peaksinadepthcorrespondingtotheburieddepth(1.8nanosec.). Eigenimage1,2,and3andassociatedPC's shows

stronggroundsurface signature. Theeigenimages shows the variations intheground surfaceandthe associatedPC's

peaks at the groundsurface (1.0 nansec.). The remaining eigenimages and PC's shows more mixedclutter-landmine

signals. However,theyhavemuchlesspower. Itisclearthattheseparationintimeispoor. TheeigenimagesandPC's

areusedasinputstothes-ICAandt-ICA.

(9)

Eigenimages,t-ICA IndependentComponents, t-ICA

EI 1 EI 2 EI 3

EI 4 EI 5 EI 6

EI 7 EI 8 EI 9

EI 10 EI 11 EI 12

1 2 3

50 00 50

S 1

1 2 3

50 100 150 200

S 2

1 2 3

20 40 60 80 100

S 3

1 2 3

20 40 60 80 00 20 40

S 4

1 2 3

20 40 60 80 100

S 5

1 2 3

20 40 60 80 100 120

S 6

1 2 3

20 40 60 80 00

S 7

1 2 3

20 40 60 80 100

S 8

1 2 3

20 40 60 80

S 9

1 2 3

20 40 60 80

S 10

1 2 3

20 40 60

S 11

1 2 3

20 40 60

S 12

IndependentComponents, s-ICA Time signals,s-ICA

EI 1 EI 2 EI 3

EI 4 EI 5 EI 6

EI 7 EI 8 EI 9

EI 10 EI 11 EI 12

1 2 3

1 2 3 4

x 10 −8

S 1

1 2 3

2 4 6 8 10

x 10 −9

S 2

1 2 3

1 2 3 4 5 6

x 10 −9

S 3

1 2 3

1 2 3 4

x 10 −9 S 4

1 2 3

5 10 15

x 10 −9 S 5

1 2 3

2 4 6 8 10 12 14

x 10 −10 S 6

1 2 3

2 4 6 8

x 10 −10 S 7

1 2 3

5 10 15

x 10 −10 S 8

1 2 3

1 2 3 4 5 6

x 10 −9 S 9

1 2 3

0.5 1 1.5 2 2.5

x 10 −9 S 10

1 2 3

0.5 1 1.5 2 2.5 3

x 10 −9 S 11

1 2 3

1 2 3 4

x 10 −9 S 12

Figure 3. Eigenimages (xy-plane) and associated timesignals for thet-ICA and the s-ICA havingthe rst M =15

PC's,y

i

,andeigenimages,ui,asinput,respectively. Onlythersteigenimagesandtimesignalsareshown. Fromthe

eigenimagesandtimesignalsitisclearthatthet-ICAprovidesagoodtimeseparation,andthes-ICAprovidesagood

spatialseparation.

(10)

Eigenimages,t-ICA IndependentComponents, t-ICA

EI 1 EI 2 EI 3

EI 4 EI 5 EI 6

EI 7 EI 8 EI 9

EI 10 EI 11 EI 12

1 2 3

50 00 50

S 1

1 2 3

50 100 150 200

S 2

1 2 3

20 40 60 80 100

S 3

1 2 3

20 40 60 80 00 20 40

S 4

1 2 3

20 40 60 80 100

S 5

1 2 3

20 40 60 80 100 120

S 6

1 2 3

20 40 60 80 00

S 7

1 2 3

20 40 60 80 100

S 8

1 2 3

20 40 60 80

S 9

1 2 3

50 00 50

S 10

1 2 3

10 20 30 40 50 60

S 11

1 2 3

20 40 60

S 12

IndependentComponents, s-ICA Time signals,s-ICA

EI 1 EI 2 EI 3

EI 4 EI 5 EI 6

EI 7 EI 8 EI 9

EI 10 EI 11 EI 12

1 2 3

1 2 3

x 10 −8 S 1

1 2 3

2 4 6 8

x 10 −9 S 2

1 2 3

2 4 6 8

x 10 −9 S 3

1 2 3

1 2 3 4

x 10 −9

S 4

1 2 3

2 4 6 8 10 12

x 10 −9

S 5

1 2 3

2 4 6 8

x 10 −10

S 6

1 2 3

2 4 6

x 10 −10 S 7

1 2 3

1 2 3 4

x 10 −10 S 8

1 2 3

0.5 1 1.5 2

x 10 −9 S 9

1 2 3

1 2 3 4

x 10 −10 S 10

1 2 3

2 4 6 8 10 12 14

x 10 −10 S 11

1 2 3

0.5 1 1.5 2

x 10 −9 S 12

Figure 4. Eigenimages (xy-plane) and associated timesignals for thet-ICA and the s-ICA havingthe rst M =15

PC's,y

i

,andeigenimages,ui,asinput,respectively. Onlythersteigenimagesandtimesignalsareshown. Fromthe

eigenimagesandtimesignalsitisclearthatthet-ICAprovidesagoodtimeseparation,andthes-ICAprovidesagood

spatialseparation.

(11)

SelectionofTemporal Features

IronDummy PlasticDummy

Raw Mean PCA, 15 PC’s t−ICA, 15 PC’s s−ICA, 15 EI’s

Raw Mean PCA, 10 PC’s t−ICA, 10 PC’s s−ICA, 10 EI’s

Raw Mean PCA, 5 PC’s t−ICA, 5 PC’s s−ICA, 5 EI’s

Raw Mean PCA, 15 PC’s t−ICA, 15 PC’s s−ICA, 15 EI’s

Raw Mean PCA, 10 PC’s t−ICA, 10 PC’s s−ICA, 10 EI’s

Raw Mean PCA, 5 PC’s t−ICA, 5 PC’s s−ICA, 5 EI’s

Selection ofSpatial Features

Raw Mean PCA, 15 PC’s t−ICA, 15 PC’s s−ICA, 15 EI’s

Raw Mean PCA, 10 PC’s t−ICA, 10 PC’s s−ICA, 10 EI’s

Raw Mean PCA, 5 PC’s t−ICA, 5 PC’s s−ICA, 5 EI’s

Raw Mean PCA, 15 PC’s t−ICA, 15 PC’s s−ICA, 15 EI’s

Raw Mean PCA, 10 PC’s t−ICA, 10 PC’s s−ICA, 10 EI’s

Raw Mean PCA, 5 PC’s t−ICA, 5 PC’s s−ICA, 5 EI’s

Selectionof Spatial and TemporalFeatures

Raw Mean PCA, 15 PC’s t−ICA, 15 PC’s s−ICA, 15 EI’s

Raw Mean PCA, 10 PC’s t−ICA, 10 PC’s s−ICA, 10 EI’s

Raw Mean PCA, 5 PC’s t−ICA, 5 PC’s s−ICA, 5 EI’s

Raw Mean PCA, 15 PC’s t−ICA, 15 PC’s s−ICA, 15 EI’s

Raw Mean PCA, 10 PC’s t−ICA, 10 PC’s s−ICA, 10 EI’s

Raw Mean PCA, 5 PC’s t−ICA, 5 PC’s s−ICA, 5 EI’s

Figure 5. Reconstructed powerimages. Ingeneral, it is clear that the component selection methodbased on com-

bined spatialand temporal features shows thebest performance. Thet-ICA and s-ICA are comparedwiththe PCA

method 11,12

. Thet-ICAand inparticular thes-ICAshowbothbetter performance thanthe PCAand themeansub-

tractionmethod.Itshouldbenoticedwhenusingthecomponentselectionmethodbasedontemporalfeaturesthet-ICA

showsbestperformance,andforthecomponentselectionmethodbasedonspatialfeaturesthes-ICAshowsbestperfor-

mance. Inoverall, thes-ICAcombinedwiththecomponentselectionmethodbasedoncombinedspatialand temporal

featuresshowthebestperformance. Thelandminedummyislocatedinthecenterofeachimage.

(12)

a) Mean b)t-ICA, 15 PC's,Temp.

20 40 60 80 100 120 20

40 60 80 2 3 4 5 6 7 8 9

x 10

−3

x [cm]

y [cm]

20 40 60 80 100 120 20

40 60 80 1 2 3 4 5 6

x 10

−3

x [cm]

y [cm]

c) s-ICA,15 EI's, Spa. d) s-ICA, 15 EI's, Spa./Temp.

20 40 60 80 100 120 20

40 60 80 1 2 3 4 5

x 10

−3

x [cm]

y [cm]

20 40 60 80 100 120 20

40 60 80 0.5

1 1.5 2 2.5

x 10

−3

x [cm]

y [cm]

Figure 6. a): mesh plot of mean-image. b): mesh plot of the t-ICA using 15PC's as input and temporal feature

component selection. c): meshplotof the s-ICA using15EI'sas input andspatial featurecomponent selection. d):

meshplotofthes-ICAusing15EI'sasinputandspatial/temporalfeaturecomponentselection.

Plastic Dummy (Bees Wax) Clutter Reduction Results

a) Mean b) t-ICA, 15 PC's,Temp

20 40 60 80 100 120 20

40 60 80 1 2 3 4 5 6 7 8

x 10

−3

x [cm]

y [cm]

20 40 60 80 100 120 20

40 60 80 0.5

1 1.5 2 2.5 3 3.5 4 4.5

x 10

−3

x [cm]

y [cm]

c) s-ICA, 15 EI's, Spa. d) s-ICA,5 EI's, Spa./Temp.

20 40 60 80 100 120 20

40 60 80 1 2 3 4 5 6 7 8

x 10

−3

x [cm]

y [cm]

20 40 60 80 100 120 20

40 60 80 0.5

1 1.5 2 2.5 3 3.5 4 4.5

x 10

−3

x [cm]

y [cm]

Figure 7. a): mesh plot of mean-image. b): mesh plot of the t-ICA using 15PC's as input and temporal feature

component selection. c): meshplotof the s-ICA using15EI'sas input andspatial featurecomponent selection. d):

meshplotofthes-ICAusing5EI'sasinputandspatial/temporalfeaturecomponentselection.

Referencer

RELATEREDE DOKUMENTER

maripaludis Mic1c10, ToF-SIMS and EDS images indicated that in the column incubated coupon the corrosion layer does not contain carbon (Figs. 6B and 9 B) whereas the corrosion

In this study, a national culture that is at the informal end of the formal-informal continuum is presumed to also influence how staff will treat guests in the hospitality

If Internet technology is to become a counterpart to the VANS-based health- care data network, it is primarily neces- sary for it to be possible to pass on the structured EDI

Vel udflnkte det himmelffe Lys ei Helvedes tcendte Brand i hans blodhevnterstiae B ry s t; vel vendte. Naturens Hele Forvandling med eet ei Naalen, der

Over the years, there had been a pronounced wish to merge the two libraries and in 1942, this became a reality in connection with the opening of a new library building and the

In order to verify the production of viable larvae, small-scale facilities were built to test their viability and also to examine which conditions were optimal for larval

H2: Respondenter, der i høj grad har været udsat for følelsesmæssige krav, vold og trusler, vil i højere grad udvikle kynisme rettet mod borgerne.. De undersøgte sammenhænge

Driven by efforts to introduce worker friendly practices within the TQM framework, international organizations calling for better standards, national regulations and