• Ingen resultater fundet

View of On Fixed Divisors of Forms in Many Variables, I

N/A
N/A
Info
Hent
Protected

Academic year: 2022

Del "View of On Fixed Divisors of Forms in Many Variables, I"

Copied!
24
0
0

Indlæser.... (se fuldtekst nu)

Hele teksten

(1)

ON FIXED DIVISORS OF FORMS IN MANY VARIABLES, I

A. SCHINZEL (In memory of Trygve Nagell)

Abstract

LetDd,r be the maximal fixed divisor of a primitive form of degreedinr variables overZ. A formula is given forDd,2and estimates forDd,rforr >2. As a consequence, a question of Nagell raised in 1919 is completely answered.

LetKbe a finite extension ofQand forfK[x1, . . . , xr] letC(f )andD(f ) be the highest common ideal factor of the coefficients off and of the values of fforxZr, respectively. Polynomialsf withC(f )=1 are called primitive.

For a prime idealᒍand an idealᑾofK, let ordᑾbe the exponent with which ᒍoccurs in the factorization of ᑾ. T. Nagell has proved ([5], p. 16) that for everyfZ[x1, . . . , xr] of degreed

(1) D(f )|d!C(f ).

This result is implicit in [4]. An easy generalization is contained in

Theorem1. For every finite extensionKofQand for everyfK[x1, . . . , xr]of degreed(1)holds.

Put

Sd,r = {F ∈Z[x1, . . . , xr],of degreed, homogeneous and primitive}, Sd,r0 = {F ∈Sd,r,splitting overC},

Sd,r1 = {F ∈Sd,r,splitting overZ}.

It follows from (1) that the following definitions are correct:

Dd,r = max

f∈Sd,rD(f ), Dd,r1 = max

f∈Sd,r1 D(f ).

ForK=Q,D(F )is identified with its positive generator. We shall prove

Received 14 October 2011, in final form 20 August 2012.

(2)

Theorem2.For allFSd,r0 and for all primesp ordpD(F )≤ordp

p

(pr−1−1)d pr −1

!

.

Theorem3.For all positive integersdandr >1and for all primesp ordpDd,12≥ordp

p

d p+1

!

,

ordpD1d,r(pr−1−1)qr−1ordp((pq)!)+ordp

p

d(pr−1)qr p+1

!

, whereq =

r

d pr1

.

Corollary1.For all positive integersdand for all primesp ordpDd,2=ordp

p

d p+1

!

=ordpDd,12.

Corollary2.The least integerd, sayd2(n), such thatn! |Dd,2is4for n=3and3 n2

, otherwise.

The corollary answers a question asked by Nagell [5]. He has proved that d2(2)=3,d2(3)=4,d2(4)=d2(5)=4,d2(n)≤2n−1. The last result has been anticipated by Hermite (see [2], p. 266).

Corollary3.For all integersd ≥3andr ≥2and for all primesp < d ordpD1d,r =d

1

p−1− 1 pr−1

+dr−1r O r

p + logd rlogp +1

, where the constant in theO-symbol is absolute anddr−1r can be omitted for r =2.

Corollary4.For all integersr ≥2

logDd,r =dlogd+O(d) uniformly inr.

Theorem4.

(i) For all positive integersdandr

Dd,r |(d−1)!

(3)

(ii) For all integersd ≥4,rd =d−ord2

2 d3

!

−1andrrd, Dd,r =Dd,rd.

Corollary5.For all positive integersd≤6andr ≥2 Dd,r =Dd,2.

Corollary6.D91,3=D19,2. Corollary 1 suggests the following

Conjecture.For all positive integersdandr Dd,r =D1d,r.

This is true ford <9 and eachr, see Remark after the proof of Corollary 5.

Theorem5.Letdr(n)be the least integerdsuch thatn! |Dd,r. Then for allr the limitlr =limr→∞drn(n) exists and satisfieslr22rr12. If Conjecture is true we have equality.

Theorem6.For all positive integersd ≥34·23=648andr = 1+28d+1 Dd,r ≡0 mod d−3(2d)3/4!.

Corollary7.Forr1+28d+1

we have

logDd,r =dlogdd+O(d3/4logd) uniformly inr.

Proof of Theorem 1. Since xn is a linear combination of x

j

(j = 0, . . . , n) with integral coefficients, it follows that

(2) f =

iId

αi x1

i1

. . .

xr

ir

,

whereId = {i= [i1, . . . , ir] :i1+ · · · +ird},αiK. We shall show by induction onkthat

(3) D(f )|αi for iIk.

(4)

Sinceα0 = f (0), (3) holds fork = 0. Assume that it holds fork and let j1+ · · · +jr =k+1. By the inductive assumption

D(f )

iIk

αi x1

i1

. . .

xr

ir

for all xZr,

hence, by (2), (4) D(f )

iId\Ik

αi x1

i1

. . . xr

ir

for all xZr.

Since foriId\Ikwe havei1+ · · · +irk+1=j1+ · · · +jr we obtain eitheris =js for allsroris > jsfor at least onesr. Therefore,

iId\Ik

αi j1

i1

. . .

jr

ir

=αj

and, by (4),D(f )|αj, which completes the inductive proof of (3). Now, D(f )g.c.d.

iId αi g.c.d.

iId

d i1, . . . , ir

αi

d! g.c.d.

iId

αi i1!. . . ir!

d!C(f ).

Remark. In the same way one can prove that all values of a polynomial fK[x1, . . . xr] atxZr belong to an ideal ᑾ ofK, if and only iff =

i∈Iai

x1

i1

. . .xr

ir

, whereai∈ᑾfor alliI.

For the proof of Theorem 2 we need two lemmas.

Lemma1.For every primepand positive integern ordp(n!)= nsp(n)

p−1 , wheresp(n)is the sum of digits ofnin the basep.

Proof. See [1], pp. 54–55.

Lemma 2.For every finite field Fq, whereq = pf (p prime) and every vectorvFrq\ {0}there exist at mostpr−1−1vectorsxFrp\ {0}such that

(5) vx=0.

Proof. Letw1, . . . , wf be a basis ofFq overFp and letv = f

i=1viwi, viFpr. Sincev = 0we havevj =0for at least onejf. Moreover, the

(5)

equation (5) givesvix =0 for allif, hence the number in question does not exceed the number of non-zero solutions ofvjx=0, which ispr1−1.

Proof of Theorem2. LetKbe a splitting field ofF and F =

d i=1

Li,

whereLiK[x1, . . . , xr] are linear forms. Letᒍbe a prime ideal ofKand letπbe an element ofKsuch that ordπ =1. SinceC(F )=1, multiplying Li by a suitable power ofπ we may achieve

(6) ordC(Li)=0 (1≤id).

Let normᒍ=q and forvFrq\ {0}

Nv= {i≤d : Liv1x1+ · · · +vrxr modᒍ}.

By Lemma 2

xFpr\{0}

vFrq\{0} vx=0

|Nv| =

vFrp\{0}

|Nv|

xFpr\{0} vx=0

1

(pr−1−1)

vFrq\{0}

|Nv| =(pr−1−1)d.

It follows that there existsx0Zr,x00modᒍsuch that denoting byx0the residue class ofx0modpwe have

(7) s(x0):=

vFrq\{0} vx0=0

|Nv| ≤

(pr1−1)d pr −1

.

However, fori /

vFrq\{0},vx0=0Nvwe haveLi(x0)≡0 mod, hence ordD(F (px+x0))=ordD

vFrq\{0} vx0=0

i∈Nv

Li(px+x0)

.

Now for i in question, by (6), ordC(Li(px +x0)) ≤ ordp. Hence by Theorem 1

ordD(F )≤ordD(F (px+x0))s(x0)ordp+ord((s(x0))!)

=ord((ps(x0))!)

(6)

and the inequality ordp

p

(pr−1−1)d pr−1

!

≥ordpD(F ) follows from (7).

For the proof of Theorem 3 we need again two lemmas

Lemma3. For alld andr and all primitive formsFZ[x1, . . . , xr] of degreed

D(F )|Dd,r. If, moreover,F splits overZ, then

D(F )|Dd,r1 .

Proof. We shall prove the first part of the lemma; the proof of the second part is analogous. Assuming the contrary we infer the existence of a primep such that

ordpD(F ) >ordpDd,r.

LetDd,r =D(F0), whereF0Z[x1, . . . , xr] is a primitive form of degreed. By the Chinese remainder theorem there exists a formF1Z[x1, . . . , xr] of degreedsatisfying the congruences

F1F modpordpD(F ), F1F0modDd,r/pordpDd,r.

We have F1 = cF2, whereF2is primitive and(c, pDd,r) = 1. Now, by the congruences above

Dd,rpordpD(F )−ordpDd,r |D(F2), henceD(F2) > Dd,r, contrary to the definition ofDd,r.

Lemma4.For all primespand positive integersdthe form of degreed

Fpd(x, y)=

d−

p+1d

1

i=0

(xiy)

d p+1

1

j=0

(yjpx) is primitive and satisfies

(8) ordpD(Fpd)ep =ordp

p d

p+1

!

.

(7)

Proof. The formFpd is primitive, since each factor is primitive. We con- sider three cases

y ≡0 modp, (9)

y ≡0≡x, (10)

y ≡0≡xmodp.

(11)

In the case (9) there exists an integerzsuch that xzymodpep. Hence

d−

p+1d

1

i=0

(xiy)yd−

d p+1

d−

p+1d

1

i=0

(zi)

yd−

d p+1

dd

p+1

! z

dp+d1

modpep. Now,

dd

p+1

p d

p+1

, hence

ordpFpd(x, y)≥min

ordp

dd

p+1

!

, ep

ep. In the case (10) we havey =pt,tZand there exists an integerusuch that

tux modpep

d p+1

. Hence

d p+1

1

j=0

(yjpx)=p

d p+1

d

p+1

1

j=0

(tj x)

p

d p+1

d p+1

! u

p+d1

modpep and

ordpFpd(x, y)d

p+1

+min

ordp d

p+1

!

, epd

p+1

.

(8)

Sincep p+d1

and p+d1

have the same sum of digits in the basep, by Lemma 1 the right-hand side equalsep.

In the case (11) we have ordpFpd(x, y)d > d−1

p−1 ≥ordp(d!)≥ordp

p d

p+1

!

=ep.

Thus in each case (8) holds.

Proof of Theorem3. Forr = 2 the theorem is contained in Lemma 4.

Forr ≥2 consider the form splitting overZ

F0=

pq−1 a1=0

. . .

pq−1

ar=0 p(a1,...,ar)

(a1x1+ · · · +arxr).

The number of factors in the product is(pr−1)qr, hence degF0Fp,d−(pr1)qr = d. We haveF0Fp,d−(pr1)qr = cF1, wherec ≡0 modp andF1 is primitive, thusF1Sd,r1 and by Lemma 4

ordpD1d,r ≥ordpD(F0)+ordp

p

d(pr −1)qr p+1

!

.

In order to prove that

(12) ordpD(F0)(pr−1−1)qr−1ordp((pq)!) we distinguish two cases:

(13) xj ≡0 modp for at least onejr and

(14) x1≡ · · · ≡xr ≡0 modp.

In the case (13) we may assume in view of symmetry betweenxj thatxr ≡ 0 modp. Then there exist integersyj such thatxjyjxr modpd(j < r)and

(9)

we obtain F0(x1, . . . , xr)

xr(pr1)qr

pq−1 a1=0

. . .

pq−1

ar=0 p(a1,...,ar)

(a1y1+ · · · +ar−1yr−1+ar)

=xr(pr1)qr

pq−1 a1=0

. . .

pq−1

ar−1=0 p(a1,...,ar−1)

(pq)!

a1y1+ · · · +ar−1yr−1+pq−1 pq

·

pq−1 a1=0

. . .

pq−1

ar−1=0 p|(a1,...,ar−1)

pq−1

ar=0 par

(a1y1+ · · · +ar−1yr1+ar)modpd.

Since there are(pr−1−1)qr−1vectors [a1, . . . , ar1]∈ {0, . . . , pq−1}r such thatp(a1, . . . , ar1)we obtain

ordpF0(x1, . . . , xr)≥min{d, (pr−1−1)qr−1ordp((pq)!)}

=(pr1−1)qr1ordp((pq)!), hence (12) follows.

In the case (14) the same inequality is obvious.

Proof of Corollary 1. For r = 2 we have Sd,r = Sd,r0 . The upper estimate for ordpD(F )given in Theorem 2 and the lower estimate for ordpDd,12

given in Theorem 3 coincide.

Remark. There exists a more direct proof of Corollary 1 using a factoriz- ation ofF over thep-adic field instead of a factorization overC.

Proof of Corollary2. d2(n)is the least non-negative integer such that n!|Dd,2. By Corollary 1 this divisibility is equivalent to

ordp(n!)≤ordp

p d

p+1

!

for all primesp < d,

or to

n p

d

p+1

.

The leastdsatisfying this inequality for all primesp < dis maxp

(p+1)

n p

≥3 n

2

(10)

Except forn=3 we have the equality.

Proof of Corollary3. We have by Lemma 1 ordp

p

(pr−1−1)d pr−1

!

< p(pr1−1)d (pr −1)(p−1) =

1

p−1 − 1 pr −1

d.

On the other hand, fordpr −1

qr >

r

d pr −1−1

r

> d pr−1 −r

d pr −1

r−1r

and ford < pr −1

0> d pr−1 −r

d pr −1

r−1

r

, thus by Lemma 1

(pr−1−1)qr−1ordp((pq)!)+ordp

p

d(pr −1)qr p+1

!

(pr−1−1) pqr

p−1 −(pr−1−1)qr−1 logd

logp +1

+ p

p−1· d(pr −1)qr

p+1 − logd logp

pd

p2−1+ (prp2)qr

p2−1 +dr−1r O

logd rlogp+1

> d 1

p−1 − 1 pr −1

+dr−1r O r

p + logd rlogp +1

.

It is easy to see that forr =2 the factordr−1r can be omitted.

Proof of Corollary4. By (1) we have

logDd,r ≤logd!=dlogd+O(d),

(11)

on the other hand, by Corollary 1, logDd,r ≥logDd,2

p<d pprime

d p+1

logp

d

p<d pprime

logp

p+1 −

p<d pprime

logp=dlogd+O(d).

For the proof of Theorem 4 we need three lemmas.

Lemma5.If, for a primep,

(15) ordpDd,r+1>ordpDd,r, then there exists a formFSd,r+1such that (16) ordpD(F )=ordpDd,r+1

and

x1x2. . . xr+1|F.

Proof. Let

(17) Dd,r+1=D(F0), when F0Sd,r+1. We have

F0=

S⊂{1,...,r+1}

FS,

whereFS consists of those monomials ofF in which occur just the variables with indices belonging toS,F=0. It follows by induction onsr+1 that

(18) pordpDd,r+1 |D(Fs)

and

(19) pC(Fs),

whereFs =

{1,...,s}⊂S⊂{1,...,r+1}FS.

Indeed, fors=0, (18) and (19) follow from (17). Assuming that (18) holds for ansrand puttingxs+1=0 we find that

(20) pordpDd,r+1 |D(FsFs+1),

(12)

hence by (18)

pordpDd,r+1 |D(Fs+1).

Since the form FsFs+1 depends only on the variables x1, . . . , xs, xs+2, . . . , xr+1it follows from (15) and (20) that

p|C(FsFs+1), hence by (19)

pC(Fs+1),

which completes the inductive proof of (18) and (19). Applying these formulae fors =r+1 we infer that

pordpDd,r+1 |D(Fr+1), pC(Fr+1).

The formF =Fr+1C(Fr+1)1satisfies the conditions of the lemma.

Lemma6.For all positive integersd andrand for all primesp ordpDd,r+1≤max

ordpDd,r,

dr−1 p−1

.

Proof. If ordpDd,r+1>ordpDd,r letF be a form of Lemma 5. We have

F =

iI

ai·x1i1x2i2. . . xr+ir+11,

wherei=[i1, . . . , ir+1],is (1≤sr+1)are positive integers,Iis a certain finite set andi1+ · · · +ir+1=d,aiZfor alliI. We have

xi =i! x

i

+fi(x), wherefiZ[x], degfi < i, hence

F =

iI

ai r+1

s=1

is! xs

is

+fi(x1, . . . , xr+1)

wherefiZ[x1, . . . , xr+1], degfi< d. It follows now from Nagell’s theorem [5, p. 15] and (16) that

(21) pordpDd,r+1 |g.c.d.iI

ai

r+1

s=1

is!

.

(13)

However, by Lemma 1,

ordp

r+1

s=1

is!=

r+1

s=1

ordpis!≤

r+1

s=1

is−1

p−1 = dr−1 p−1 , and sinceFSd,r+1

ordpg.c.d.iI

ai

r+1

s=1

is!

dr−1 p−1 , hence we obtain from (21)

ordpDd,r+1

dr−1 p−1

.

Lemma7.For all primesp < d

(22) ordp

p d

p+1

!

≥ ord2

2 d3

! p−1

.

Proof. In order to diminish the number of parentheses we agree to perform factorial after multiplication. Forp = 2, (22) becomes equality. For p = 3, d <12 we verify (22) directly. Forp= 3,d = 12k+r, 0 ≤r <12,k ≥1 we have

ord3

3

d 4

!

− ord2

2 d3

! 2

k−ord2k!+2 r4

−ord2

2 r3

! 2

k−ord2k!−1

2 ≥0.

Forp=5,d =6k+r, 0≤r <6,k≥1 we have

ord5

5

d 6

!

− ord2

2 d3

! 4

k−ord2k!−ord2

2 r3

! 4

k−ord2k!−1

4 ≥0.

(14)

For p = 7, d < 24 we verify (22) directly. For p = 7, d = 24k + r, 0≤r <24,k≥1 we have

ord7

7

d 8

!

− ord2

2 d3

! 6

≥ 3k+6 r8

−ord2k!−ord2

2 r3

! 6

≥ 3k−ord2k!−3

6 ≥0.

Forp < d <3pwe have ordp

p

d p+1

!

d

p+1

≥1,

ord2

2

d 3

!

≤ord2((2p−2)!)≤2p−3, ord2

2 d3

! p−1

≤1.

For 3pd < 9p−23 we have

ordp

p d

p+1

!

d

p+1

≥2,

ord2

2

d 3

!

≤ord2((3p−3)!)≤3p−4, ord2

2 d3

! p−1

≤2.

For 9p−23d <6p−3 we have

ordp

p d

p+1

!

d

p+1

≥3,

ord2

2

d 3

!

≤ord2((4p−4)!)≤4p−5, ord2

2 d3

! p−1

≤3.

(15)

Forp≥11,d ≥6p−3 we have ordp

p

d p+1

!

d

p+1

dp p+1, ord2

2

d 3

!

≤2 d

3

−1≤ 2 3d−1, hence

ordp

p d

p+1

!

− ord2

2 d3

! p−1

dp p+1 −

2 3d−1

p−1

= d(p−5)−3(p2−2p−1) 3(p2−1)

(2p−1)(p−5)p2+2p+1 p2−1

= p2−9p+6 p2−1 ≥ 7

30.

Proof of Theorem4. (i) We proceed by induction onr. SinceDd,1=1, forr = 1 the assertion holds. Assume thatDd,r | (d−1)!. It for all primes p: ordpDd,r+1≤max{ordpDd,r,ordp((d−1)!)}, we haveDd,r+1|(d−1)!.

Otherwise, by Lemma 5, there exists a primepand a formFSd,r+1such that

(23) ordpD(F )=ordpDd,r+1>ordp((d−1)!) and

(24) x1x2. . . xr+1|F.

SinceFSd,r+1,F (x1. . . xr,1)is primitive and by (24) of degree at most d−1. Hence by (1)

D(F (x1. . . xr1,1)|(d−1)!. contrary to (23).

(ii) We proceed by induction onrrd. Forr =rdthe assertion is obvious.

Assume that it is true for the indexr. IfDd,r+1 > Dd,r, then there exists a primep < dsuch that

ordpDd,r+1>ordpDd,r

(16)

and since ford ≥4,rd≥2, by Lemma 6 and Corollary 1 dr−1

p−1

>ordpDd,r ≥ordpDd,rd

≥ordpDd,2=ordp

p d

p+1

!

. It follows that

ord2

2 d3

! p−1

>ordp

p d

p+1

!

,

contrary to Lemma 7. ThusDd,r+1= Dd,r and, by the inductive assumption, Dd,r+1=Dd,rd.

Proof of Corollary5. SinceDd,2Dd,r(d−1)! and ford ≤ 6, d = 5, Dd,2 = (d−1)! we infer thatDd,r = Dd,2. It remains to consider d = 5 and by (ii)r = 3. SinceD5,2 = 6,(5−1)! = 24 it suffices to prove thatD5,3≡0 mod 4. Assuming the contrary, by Lemma 5, there exists a form F0Z[x, y, z] such thatxyz|F0

(25) 4|D(F0), 2C(F0).

We have for some integersa, b, c, d, e, f

(26) F0=xyz(ax2+bxy+cy2+dxz+eyz+f z2) and forx, y, zodd

4|ax2+bxy+cy2+dxz+eyz+f z2. However forx, yodd

x2y2≡1, xyx+y−1 mod 4, thus

4|ab+cde+f +(b+d)x+(b+e)y+(d+e)z and, since this holds for allx, y, zodd we have

(27) bdemod 2

and

(28) a+b+c+d+e+f ≡0 mod 4.

(17)

On the other hand, from (25) and (26) forx, y, z = 2,1,1,1,2,1,1,1,2 c+e+f ≡0, a+d+f ≡0, a+b+c≡0 mod 2. It follows from (27) thatacf mod 2, thusbdf ≡ 0 mod 2 and, by (28), 3a ≡0 mod 2,acf ≡0 mod 2, contrary to (25).

Remark. We have(D(xyz(x+y)(x+z)(x+y+z)(y+z)(yz))=48.

SinceD8,2= 2520 it follows by Lemma 3 and Theorem 4 (i) thatD8,r = 7!

for allr ≥3. On the other hand, a complicated computation shows that for all r ≥2,D7,r =5!=D7,2.

Proof of Corollary6. We have by Theorem 2 and Corollary 1 ord2D19,3≤ord2

2

27 7

!

=ord26!=4=ord2D19,2,

ord3D19,3≤ord3

3

72 26

!

=ord36!=2=ord3D91,2. Forp=5,7 we have by Corollary 1

ord2D91,2=1=ordp8!. For the proof of Theorem 5 we need 5 lemmas.

Lemma8.For all primespand all integersr > 1andα >0letd(r, pα) andd1(r, pα)be the leastdsuch thatpα |Dd,r andpα |Dd,r1 , respectively.

We have

d(r, pα)d1(r, pα)p2−1 p

α+2logαp logp +1

if αp, d(r, pα)d1(r, p)α(p+1) if α < p.

Moreover,

d(r, pα)α(p−1)+2. Proof. By Lemma 1

ordp((pn)!)pn

p−1 −logpn logp , hence by Corollary 1

ordpDd,12=epp

p2−1d− logd logp −1

(18)

and ifαp,

dp2−1 p

α+2logαp logp +1

we obtain

epα+2logαp

logp +1− logp2p1

α+2loglogαpp

logp −1≥α.

Thus ordpDd,2αanda fortiori

ordpDd,rα.

The same is true forα < pprovidedd(p+1.

On the other hand, ifpα |Dd,r, we have by Theorem 4(i) and by Lemma 1 α≤ordp((d−1)!)d−2

p−1, hencedα(p−1)+2.

Lemma9.Ifc >1andp >8/(c−1), thenpα |n!implies d(r, pα)d1(r, pα) < cn.

Proof. Ifα < p, thennαpand by Lemma 8 d(r, p)d1(r, p)α(p+1) < α

1+ c−1 8

p < cn.

Ifαp, then again by Lemma 8 d1(r, pα)p2−1

p

α+2logαp logp +1

. On the other hand, by Lemma 1

α=ordpn!< n p−1, hence

d1(r, pα)p2−1 p

n

p−1 +2log 2n logp +1

and d1(r, pα)

np+1

p +2p2−1 p

log 2n

nlogp+ p2−1 pn .

(19)

The right hand side is a decreasing function ofnand sincenp2, d(r,pnα)

d1(r,pα)

np+p1+6p2p31 +p2p31 <1+ 8p < c.

Lemma10.The limit(r, p)=limα→∞d(r,pα α)exists and satisfies(r, p)p−1.

Proof. By Lemma 8 we have p2−1

pl(r, p)=lim inf

α→∞

d(r, pα)

αp−1. For every integernthere exists an integerβnsuch that

d(r, pβn)

l(r, p)+ 1 n

βn.

IffSd,r andpβn | D(f ), thenpn | D(fq), wherefqSqd,r. Hence choosing for an arbitrary integerα > 0 an integer q such that(q−1n <

αnwe infer that

d(r, pα)qd(r, pβn) < q−1

l(r, p)+ 1 n

and forα > nβn

d(r, pα)

1+ 1

n l(r, p)+ 1 n

α.

Sincenis arbitrary, it follows that

α→∞lim

d(r, pα)

α =l(r, p).

Lemma11.The limitlr =limn→∞drn(n) exists.

Proof. If lim supn→∞drn(n) =1, then since by Theorem 4(i) lim inf

n→∞

dr(n) n ≥1

we have lr = 1. Assume that lim supn→∞drn(n) = c > 1. Since dr(n)d2(n)32nwe havec <∞. We shall prove that

(29) lim

n→∞

dr(n)

n = max

p<c−116

l(r, p) p−1 =:M.

(20)

In order to prove (29) it suffices to prove that

(30) lim sup

n→∞

dr(n)

nM

and

(31) lim inf

n→∞

dr(n) nM.

Clearly,

dr(n)=max

pαnd(r, pα).

Forp > c−161 we have by Lemma 9

d(r, pα) < c+1 2 n, and, since c+21 < c,

lim sup

n→∞

dr(n)

n =lim sup

n→∞ max

pαn p<c−116

d(r, pα)

n .

Since for everyp < c−161,ε >0 andα > α(ε) d(r, pα) < (l(r, p)+ε)α while, by Lemma 1

(32) α = n

p−1 +O(logn) we obtain forn > n0(ε)

d(r, pα) < (M+ε)n, which gives (30).

In order to prove (31) letM = l(r,p)p−1 for a primep. In view of (32)n!|Dd,r

implies for everyε >0 andn > n1(ε) dd(r, pα)(l(r, p)ε)

n

p−1+O(logn)

(Mε)n+O(logn), which proves (31).

(21)

Lemma12.Letdr1(n)be the leastd such thatn!|Dd,r1 . Then

n→∞lim dr1(n)

n = 2r −1 2r −2. Proof. We shall prove the lemma in two steps

(33) lim sup

n→∞

dr1(n)

n ≤ 2r−1 2r−2 and

(34) lim inf

n→∞

dr1(n)

n ≥ 2r −1 2r −2. We have

dr1(n)=max

pαn!d1(r, pα).

By Lemma 9 forp >8(2n−2)we have d1(r, pα) < 2r −1

2r −2n.

For p < 8(2n −2), by Corollary 3 for every ε > 0 and n > n(ε), d >

2r1 2r2+ε

n. ordpDd,r1 =d

1

p−1− 1 pr−1

+O

dr−1r logd

>

2r −1

2r −2+ε 1

p−1 − 1 pr −1

+O

nr−1r logn

> n

p−1 +O(logn)=α.

This shows (33). In order to prove (34) suppose that forε >0 and arbitrarily largen

d <

2r −1 2r −2 −ε

n.

Then by Corollary 3 ord2D1d,r <

2r −1

2r −2−ε 1− 1 2r−1

n+O

nr−1r logn

< nO(logn)=ord2n!.

Referencer

RELATEREDE DOKUMENTER

Kai Østergaard-Jensen über diese Entschei- dung: »Es verstand sich von allein, dass die neue Fassaden- verkleidung von einer Qualität sein sollte, die eine wesentlich

dem übrigen Areal sind einzelne kleine Wurzelschösslinge bemerkbar, welche über das Heidekraut nicht emporragen. Es wurde sowohl aus Frankreich eingeführter Samen angewandt als

Der langovale Schnallen- rahmen mit gerader Vorderkante verfügt zwar über eine stark verdickte Vorderkan- te, diese besteht jedoch genau wie beim Nordstrander Stück aus zwei

Über Jahre lief ein Schiff nach dem anderen vom Stapel in Nübbel, ohne daß die Werften eine Genehmigung zum Schiffbau erhalten hatten.. Der König erließ mehrmals ein Verbot,

Ihro Excellenz, Herr Friderich Wilhelm von Holstein, Geheimer Rath, Kammer-Herr und Amtmann über Tundern, den 27

Ihro Excellenz, Herr Friderich Adeler, Geheimer Rath, Stifts-Amtmann über Christiansands Stift, und Amtmann über Nedenes Amt, den 28 October 1749 Ihro Excellenz, Herr Hans

Dies sind kleine Geräte, die auf der einen Seite über die serielle Schnittstelle mit dem Computer verbunden werden und auf der anderen Seite über eine spezielle Vorrichtung mit

Er sollte sich darum kümmern, dass die Wege instandgehalten wurden, und führte auch eine gewisse Aufsicht über die Wälder.. Die freiwillige Gerichtsbarkeit und die Polizei wurden