• Ingen resultater fundet

Definition of all arcs, with constraints

on nodes connections

Figure2: TheXMLdenitionoftheFT Metaclass

AMetaclassdenesthekindofnodesandedges thatamodelmayinclude,e.g. types

ofevents,gatesandarcsinFig.2. Nodes,edges, andformalismsthemselvesareallcalled

elements.

Edgeshavealsoassociatedasetofconstraintsthattellwhichkindofelementsthatedge

mayconnect. Forexample,the\Arc"elementdenedinFig.2specieswhichconnections

areallowedbetween eventsandgates. Constraintscanalsospecifya cardinality: thatis

themaximumnumberofedgesofthatkindthatmaystart\from"orend\to"aparticular

element.

Sinceconstraintsareexpressedintermsofelements,anedgecanconnectnotonlytwo

nodes,butalsootheredgesandsub-models. Asaresult,ModelClassesorModelObjects

canbehandledastheywerenodes.

All elementshave one or more \properties" that arethe private attributes ofthe

ModelClassesandthatwillbesetwhencreatingaModelObject. Anadditionalattribute

calledvisibility isused to denethe interfaceelements: the edges can connect elements

accordingtotheirconstraints,andalsotheelementsofsub-modelsthathavethevisibility

propertysettotrue.

Turningtoourexample,anextension ofthe FTMetaclasswithaRepairEvent(RE)

isnecessarytoextendtheFTformalismandanalysistechniquesbyaddingrepairactions.

InFig. 3 the RFT Metaclass is shown that inheritsfrom FT and extends it by adding

a \Repair" node and a proper edge so that the \Repair"node can be linked to one of

the events in the tree. The \Repair" node isan implicitnode: it relies onan external

specicationoftherepairpolicy.

A\Repair"nodecorrespondstoaRB(RepairBlock),andsinceseveralrepairpolicies

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE formalism SYSTEM "formalism.dtd">

<formalism parent="FT.xml" name="RFT">

<nodeType parent="BasicEvent" name="RepBE">

<propertyType name="RepairDistribution" default="EXP 1.0"/>

</nodeType>

<nodeType parent="" name="RepairNode">

<propertyType name="Name" default=""/>

<propertyType name="RepairDistribution" default="EXP 1.0"/>

<propertyType name="Policy" default="SingleRepairTime"/>

</nodeType>

<edgeType parent="" name="RepairArc">

<propertyType name="RepLabel" default=""/>

<propertyType name="EventLabel" default=""/>

<constraint fromType="RepairNode" fromCardinality="1"

toType="Event" toCardinality="1"/>

</edgeType>

</formalism>

Figure3: TheRFTMetaclassderivedfromFT

arepossible, itmustinclude someinformation onthe particular policy itrepresents. In

this paper we assume that a repair block causes the elimination of the fault event by

eliminating all its potential causes. The properties \Policy" and \RepairDistribution"

willbe usedtodenetheimplicitbehavioratthe solutiontime.

Finally, the RFT Metaclassredenes the \BasicEvent" node ('RepBE' in Fig.3) by

addinganew property\RepairDistribution"usedto specify the timedistributionofthe

repairaction neededwhenthatBE occurs.

3.2 Model Classesand Model Objects in DrawNET++

Classesareusefultocreatealibraryofsub-modelstobeusedbyanenduser. Fig.4showsa

FTatmodelrepresentingasubsystemofthesecondversionofthemultiprocessorsystem

(withnoshared memory). AFT sub-modelisa subtreewhoseinterfaceisdenedto be

thetopeventofthesubtree.

OncetheFTatmodelofthesubsystemhasbeencreated,itcanbesavedasaModel

Class,since it representsanabstractionof a systemcomponent. The nal modelofthe

multiprocessorsystemwillbeacomposedmodelcontainingthreeinstancesofthisModel

Class,i.e. the threeModel Objects SUB IND1;SUB IND2;SUB IND3 graphically

representedbysquaresinFig.5 (a). They areobtainedbyspecifyingdierentnamesfor

eachobjectandgivingdistinctvaluestothepropertiesoftheelementsoftheModelClass

inFig.4,forexamplethepropervaluesofthefaultratesoftheBEs. ThemodelinFig.5(a)

isaweakaggregation(i.e.,amodelobtainedbyinstantiatingandconnectingsubmodels).

Fig.5 (b)showsahigh levelrepresentation ofthesystemobtainedafterapplyingstrong

aggregation(i.e. transformingthemodelinFig.5(a)intoanewsubmodelwhichhidesthe

interfacesofthethreesubmodelscomposingit).Theinterfaces(eventsSUB

i

,i2f1;2;3g)

usedtoconnectthethreeModelObjectstotheG2of3gate(inFig.5(a))havebeenhidden

andtheyarenolongervisible. Thewholeprocessorsubsystemhas been encapsulatedin

aModelClasswhoseinstance named\processing"isusedtobuildthecompletemodel.

4 GSPN representation of RFTs

Thissection introducesthe basic conceptsneededto describethe multi-solutionmethod

ofSec. 5. Inparticular itisexplained howanRFT component canbe transformedinto

aGSPNmodelby(1)automatic translationofFT objectsand(2)compositionwiththe

GSPNimplicitlydenedbyeach RB.

Automatic translation of a FT into a GSPN. Let us briey explain the FT to

GSPNtranslationalgorithm: formoredetailsthe readercanrefer to[11 ,4 ]. Each Basic

Event BE in the FT ismodeled withthe subnetin Fig. 6(a): the ringtime associated

with the timed transition represents the time to failure of that BE. Each gate in the

FT is translated into one or more transitions, connected to the places representing the

input/outputeventsofthe gate(see Fig.6(b)and(c)).

ThesubnetrepresentingallBEs,andthoserepresentingthegates,arethensuperposed

onplaceswithequallabel,formingthe logicstructureofthe FT.Anexampleisgivenin

Fig.6(d),wherethe translationofthesubtreeofthe multiprocessorFTstartingatevent

CD1isshown. ThestatespaceoftheGSPNrepresentsallpossibleevolutionsofthemodel

throughitspossiblefailurestates.

GSPNmodelsofrepairboxes. LetusintroducesomepossiblesemanticsfortheRBs

andtheir translationinterms ofa GSPNthat canbe automaticallycomposed(through

STEP 1 STEP 2

STEP 2

STEP 3

(a)

(b)

Figure5: Anexampleofweakandstrongaggregation: theFTmodelof(a)theprocessor

subsystemand(b)themultiprocessorsystem

(a) (b) (c)

Figure6: FTtoGSPNtranslationrules: (a)BE (b)OR(c)AND (d)asubtree

placeandtransitionsuperposition)withtheGSPNofthe FT(generatedas explainedin

theprevioussubsection).

Let OE

1

be a repairable event of an FT (i.e. an event connected with an RB): it

identiesa subtreeofalleventsthatmay leadtothe occurrenceofOE

1

. Let usassume

that OE

1

represents the failureof a givensystem component C: dependingonthe type

of tree originating in OE

1

, the repair actions allowing to bringcomponent Cback into

the operational state may dier. Hence the RB should include enough information to

express the repairstrategy tobe followed: inthe rest ofthissection we shallconsidera

repairstrategycalledcomplete repair,consistingofrepairingallthe basicsubcomponents

corresponding to the BE leaves of the subtree originating in OE

1

(which has the side

eect ofrepairing allthe eventson the path from the leaves to OE

1

). Otherstrategies

areconceivable, andinprincipleanystrategythatmaybemodeledbyaGSPNmightbe

directlyembeddedin the RB node by explicitlyassociating a GSPNsubmodelto it. In

thissection we show howthe GSPNof the complete repair strategycan be describedin

parametricformandautomaticallygenerated.

LetusconsiderthemultiprocessorFTexampleinFig.1. Ifarepairboxisconnectedto

eventCD1,thecomplete repairstrategywouldrequiretorepairthe BEDisk11,Disk12

andCPU1 (andhence indirectlyalsoD1). Observe that repairingCD1 mayaectalso

thefaultstatusofSUB 1,ProcandtheTE.

Therearesomepossiblechoicesinmodelingthe completerepairstrategy:

(1) the time required to perform the whole repair may be modeled by a single timed

transitionorasa(parallelorsequential)compositionofseveraltimes,oneforeachoccurred

BEinthesubtree;intheformercase,thistimeshoulddependonwhichsubsetofBE has

causedfailureeventOE

1

;

(2) possibility of new BE occurrence during the repair of OE

1

: when component C is

underrepair,isitpossiblethatsomenotyetfailedBE failsduringthe repair? Andonce

a subcomponent has been repaired, may it fail again before the whole repair of C has

completed? (this last case of course can be considered only if the OE

1

repair action is

modeledasa setofseparate repairactions,oneforeachbasicsubcomponent);

(3)innite versus niterepair facilities: it mightbe necessary toconsider the fact that

a repair action can take place onlyif a repair facilityis availableto perform it. Repair

facilitiesmaybelocaltoaRB,orsharedbyseveralRBs. Ifatmostnrepairfacilitiesare

availabletoagivenRB, thetimeneededto completethe repairwillhave tobeadjusted

for the assignment of such facilities to RBs (e.g. a policy based on priorities, with or

withoutpreemption).

LetussketchtwoparametricGSPNsmodelingtherepairofagivencomponent,both

assumingthatnewBEsmayoccurduringtherepair,anddieringinthenumberoftimed

transitionsusedtorepresentthe wholerepair. Incaseseveraltimedtransitionsareused

tomodeltherepairweassumethatanalreadyrepairedBEcannotoccuragainbeforethe

wholecomponent Crepair has completed. For the sake ofspace we make a simplifying

assumption: the subtree originating in OE

1

does not contain any shared BE (in other

words, anypath fromthe TEto the leaves ofOE

1

, contain OE

1

). Observe that shared

BEs may exist since anFT may actually be a DAG instead of a tree (as is in the case

oftherunningexamplewhena uniquesharedmemoryisusedforreplacingafailedlocal

memory).

Thetwo GSPNmodelsofa repairboxforCD1aredepictedinFig.7andFig.8: the

subtreeoriginatingin CD1includes the eventD1 andbasic eventsDisk11;Disk12and

CPU1. Moreover,onthepathfromtheTEtoCD1therearetwoevents,namelySUB 1

andProc. The two modelscanbeeasilygeneralized toanarbitrarynumber ofBEsand

intermediate events (by repeating the same pattern for each BE and event in the

sub-tree). Therstmodelcomprisesanimmediatetransitionandaplace(StartRepCD1and

RepCD1) representingthe startofrepair,a timedtransitionRepTimeCD1 modelingthe

timeneededtocompletetherepairandasubnetforthedeletionofthetokensrepresenting

afailurefromallplacescorrespondingtoeventsinCD1subtree,aswellasfromtheplaces

correspondingtotheTEandtheeventsonthepathfromtheTEtoCD1(intheexample

SUB 1andProc). By sodoing,not onlyalleventspotentially causingCD1arecleared

uponrepair,buttheeectoftherepairisalsopropagatedtoalltheeventswhichdepend

onCD1,allthewayuptotheTE:incasetherepairofCD1isnotsuÆcienttomakethe

uppereventsoperational,thentheGSPNshallautomaticallyregenerate theappropriate

tokens in the correspondingplaces usingthe immediate transitions representing the FT

gateslogic(transitionstor1;t or2andt andintheexampleofFig.6(d)).

Thesecondmodelisslightlymorecomplex,sinceseveraltimedtransitionsareincluded

(R epDisk11, R epDisk12 andR epCPU1), representing the repair timeof a single basic

subcomponent. The enablingofthistransitionsisconditionedonthe factthatthe

corre-spondingfailurehasoccurred(e.g. inputplaceCPU1 ko)andthat therepairaction has

started(inputplaceRepCD1). Whentherepairhascompleted,placeCPU1repbecomes

marked, place CPU1ko is emptied, while place CPU1 remains marked (preventing the

occurrenceoffurtherfailuresforCPU1). The sameholdsforeach basiceventBEiinthe

subtree. WhenallBEsareOK(placesBEiko allempty)the repairhasnished,andall

failuretokenscanberemoved(bythesamesubnetofhighpriorityimmediatetransitions

alreadyexplained forthe GSPNinFig. 7). Observe thatin thismodel we areassuming

thatthere areat least asmanyrepairfacilities as the number ofBEs in the subtree: in

fact,therepairactionsofallBEscanproceedinparallel.

Othervariantsofthesemodelsarepossible,forexampleforhandlingsharedBEs,for

modelinglimitedrepairfacilities,orforforcingagivenorderin therepairofthe BEin a

subtree: forspacereasontheyarenotpresentedinthispaper.

Therepairsubmodel(s)canbecomposedwiththeGSPNrepresentationoftheFTby

applyinga compositionoperator whichglues togethertwo modelsby superposingplaces

or transitions withsame labelin the two nets: in our case the models shouldbe

super-posedovertheplacesrepresentingevents,andonthetransitionsBEiFail,representingthe

D1

nexttoanimmediatetransitiontmeansthatthaspriorityi.

Figure7: Sketchofrepairnetwithonlyonerepairtime

Disk11ko

Figure8: Sketch ofrepairnetwithseveralrepairtimes.