• Ingen resultater fundet

Implementation of Real Options

CHAPTER 9. CONCLUSION

Orkla. Through the case study, we discovered that there was a clear issue of justifying the complexity of our model, especially for the valuation purposes of a company like Orkla, which has a relatively low and symmetric cash flow exposure towards the market. However, we found that the case participants could see the value of our model when used in specific areas, such as when modeling real options, pricing assets with cash flows that vary non-symmetrically with the state of the market, and when combining our proposed model with other models, such as the CAPM. Hence, we believe that the proposed model can be an alternative to conventional models in applied capital budgeting.

Furthermore, the case study with Orkla’s M&A department revealed that even though our proposed model builds on relatively complicated and less known subjects, practitioners seemed to understand the economic intuition behind the model. In our opinion, this is probably a result of a strong familiarity with the concept of systematic risk, established through a business school education. Concerning the concept of systematic risk, the case study also revealed that some of the assumptions in our proposed model are probably quite unrealistic. More specifically, it revealed that the assumption of absence of systematic risk in cash flows within states, and the assumption of non-increasing systematic risk with time, are quite inconsistent with reality and will lead to the overvaluation of many assets/projects. To counter these issues, we introduced two potential extensions to our model, namely the certainty equivalent approach to valuation and a non-recombining trinomial tree. The former deals with the absence of systematic risk within states and non-increasing systematic risk with time, while the latter only deals with non-increasing systematic risk with time. However, while the non-recombining trinomial tree does not deal with the absence of systematic risk within states, it allows for the modelling of systematically dependent cash flows, which through our case study appeared to be highly natural. In addition, the trinomial tree is implementable in practice, while the certainty equivalent approach to valuation, for now, only is a theoretical solution. A drawback is that the trinomial tree probably requires the use of a computer algorithm for the valuation of projects of more than three periods. However, we believe that in our modern world, such a requirement is probably a smaller issue. Hence, we believe that our proposed model, although perhaps with some extensions and when used for specific purposes, increases the applicability of a state-contingent asset pricing model à la Banz & Miller. We also believe that this can be done with relatively little compromise of theoretical consistency and empirical validity. However, whether or not practitioners will use our proposed model remains to be seen.

List of Figures

2.1 Illustration of a state price . . . 27

2.2 Single-period path system . . . 28

2.3 Multi-period path system . . . 28

3.1 CAPM’s sensitivity to the risk-free rate in perpetuity . . . 35

4.1 European stock market returns vs. government bond yields . . . 40

4.2 STOXX cumulative real net return and rolling 1-year volatility . . . 41

4.3 Hexagonal bin plot . . . 42

4.4 Liquidity spirals . . . 47

4.5 Economic indicator and rolling 1-year volatility for STOXX . . . 49

5.1 A 4-state normal distribution . . . 54

5.2 Non-overlapping return categorization . . . 57

5.3 Plot of rolling 1-year returns and corresponding states . . . 58

6.1 Distributional mechanics behind changes in the risk-free rate . . . 72

6.2 State price under risk-neutral measure and changed volatility . . . 73

6.3 The sensitivity of the Low state price towards volatility and the risk-free rate . . 74

6.4 Selection of Low state prices . . . 74

6.5 The sensitivity of the Mid state price towards volatility and the risk-free rate . . 75

6.6 Selection of Mid state prices . . . 75

6.7 The sensitivity of the High state price towards volatility and the risk-free rate . 76 6.8 Selection of High state prices . . . 76

6.9 Sampling from a mixture distribution . . . 78

6.10 A comparison between a sampled mixture distribution and a normal distribution 82 7.1 Orkla’s 6-month trailing market beta towards STOXX . . . 85

8.1 Real option expansion after one year . . . 95

8.2 Real option expansion after two years . . . 96

8.3 Real option no expansion . . . 96

8.5 A Present value approach to real options . . . 97

8.6 Present value comparison (DCF and state-contingent pricing model) . . . 101

8.7 Regime shifting geometric Brownian motion 10,000 simulations . . . 104

8.8 Valuation in a non-recombining trinomial tree . . . 106

List of Tables

3.1 Orkla’s shareholders . . . 33

4.1 Average of STOXX 600 rolling 1-year volatility for respective economic states . . 49

5.1 Estimates of unconditional parameters . . . 53

5.2 Probability bounds . . . 56

5.3 Return bounds . . . 56

5.4 Number of observations . . . 57

5.5 State-contingent annualized volatility and returns . . . 58

5.6 Levene’s test for equality of variances . . . 59

5.7 Strike prices (absolute states) . . . 60

5.8 1-Year state price matrix . . . 60

5.9 2-Year state price matrix . . . 60

5.10 5-Year state price matrix . . . 61

5.11 Perpetuity state price matrix . . . 63

5.12 Valuation example from Banz and Miller (1978) . . . 64

6.1 Summary statistics for the S&P 500 index and the STOXX 600 index . . . 67

6.2 Unconditional parameter estimates for the S&P 500 and the STOXX 600 . . . . 68

6.3 S&P and STOXX return intervals . . . 68

6.4 S&P and STOXX one year state price matrices . . . 68

6.5 State-contingent risk-free rates from Banz and Miller (1978) . . . 69

6.6 Return bounds . . . 70

6.7 Summary statistics S&P 500 . . . 70

6.8 State price matrix comparison with Banz & Miller . . . 71

6.9 Central moments of the sampled mixture distribution and the normal distribution 83 8.1 Comparison of present values calculated using a non-recombining trinomial tree 107 8.2 Discount factors for extreme scenarios . . . 108

Bibliography

Arrow, K. J. (1964). The role of Securities and Optimal Allocation of Risk-bearing.The Journal of Finance, 31(2):91–95.

Arrow, K. J. and Debreu, G. (1954). Existense of an Equilibrium for a Competitive Economy.

Econometrica, 22(3):265–290.

Aydemir, A., Gallmeyer, M., and Hollifield, B. (2005). Financial Leverage Does Not Cause the Leverage Effect.

Banz, R. W. and Miller, M. H. (1978). Prices for State-Contingent Claims : Some Estimates and Applications. The Journal of Business, 51(4):653–672.

Bekaert, G. and Wu, G. (2000). Asymmetric Volatility and Risk in Equity Markets. Journal of Finance, 13(1):1–42.

Breeden, D. T. (1979). An Intertemporal Asset Pricing Model with Stochastic Consumption and Investment Opportunities. Journal of Financial Economics. Journal of Financial Economics, 7(3):265–296.

Breeden, D. T. and Litzenberger, R. H. (1978). Prices-of-State-Contingent-Claims-Implicit-in-Option-Prices.pdf. Journal of Business,, 51(4):621–651.

Brunnermeier, M. K. and Pedersen, L. H. (2007). Market Liquidity and Funding Liquidity.

Campbell, J. Y. and Cochrane, J. H. (1995). By Force of Habit: A Consumption-based Expla-nation of Aggregate Stock Market Behavior.

CEconomics(a). Real interest rate forecasts. http://www.consensuseconomics.com/

Forecast_Surveys/Real_Interest_Rate_Forecasts.htm [4/11/2018].

Chu, C.-S. J., Santoni, G. J., and Liu, T. (1996). Stock market volatility and regime shifts in returns. Information Sciences, 94:179–190.

Debreu, G. (1959). Theory of Value: An Axiomatic Analysis of Economic Equilibrium. New Haven and London, Yale university press.

deutsche finanzagentur(a). Deutsche finanzagentur yield on 0.50% inflation-linked Fed-eral bond 2014 (2030) . https://www.deutsche-finanzagentur.de/en/fact-sheet/

sheet-detail/productdata/sheet/DE0001030559/[3/18/2018].

ECB(a). ECB yield curve and forecast inflation. https://www.ecb.europa.eu[4/11/2018].

BIBLIOGRAPHY

ECB(b). ECB yield curve and forecast inflation. https://www.ecb.europa.eu/mopo/

implement/omt/html/index.en.html#pspp [4/16/2018].

Fama, E. F. and French, K. R. (1989). Business Conditions and Expected Returns on Stocks and Bonds. Journal of Financial Economics, 25:23–49.

Figlewski, S. (1997). Forecasting Volatility. Financial Markets, Institutions and Instruments, 6(January):1–88.

Fornari, F. and Mele, A. (2013). Financial volatility and real economic activity. Journal of Financial Management Markets and Institutions, 1(2):155–196.

French, K. R., Schwert, G. W., and Stambaugh, R. F. (1987). expected stock returns and volatility. journal of financial economics, 19:3–29.

Hakansson, N. H. (1976). The Purchasing Power Fund: A New Kind of Financial Intermediary.

Financial Analysts Journal, 32(6):49–59.

Ibbotson, R. and Sinquefield, R. (1977). Stocks, Bonds, Bill and Inflation: The Past (1926-1976) and the Future (1977-2000). Financial Analysts Research Foundation.

Ibbotson, R. G. and Sinquefield, R. A. (1976). Stocks, Bonds, Bills and Inflation: The Post (1926-1976) and the Future (1977-2000). The Journal of Business, 49(3):313–338.

Ireland, P. (2018). ECON 337901 - Financial Economics. http://irelandp.com/econ3379/

notes/ch09slides.pdf[4/18/2018].

Lawler, G. F. (2006). Introduction to Stochastic Processes. Chapman & Hall/CRC, 2 edition.

Lucas, R. E. (1978). Asset Prices in an Exchange Economy. Econometrica, 46(6):1429–1445.

Mele, A. (2007). Asymmetric stock market volatility and the cyclical behavior of expected returns. Journal of Financial Economics, 86(2):446–478.

Munk, C. (2016). Financial Markets and Investments [Lecture Notes].

OECD(a). OECD GDP Forecasts. https://data.oecd.org/gdp/gdp-long-term-forecast.

htm#indicator-chart[4/18/2018].

OECD(b). European OECD members. http://www.oecd.org/about/membersandpartners/

[4/18/2018].

OECD(c). OECD Inflation data. https://data.oecd.org/price/inflation-cpi.htm [4/18/2018].

OECD(d). OECD Composite Leading Indicator. https://data.oecd.org/leadind/

composite-leading-indicator-cli.htm [4/18/2018].

Orkla. Orkla(b). https://www.orkla.no/investor/om-orkla-aksjen/aksjonaerer/

[26/02/2018].

BIBLIOGRAPHY

Pedersen, L. H. (2015). Efficiently Inefficient. Princeton University Press.

Rubinstein, M. (1976). The Strong Case for the Generalized Logarithmic Utility Model as the Premier Model of Financial Markets. Journal of Financial Economics, 31(4):551–571.

Schwert, G. W. (1989). Why Does Stock Market Volatility Change Over Time? The Journal of Finance, 44(5):1115–1153.

STOXX(a). STOXX600. https://www.stoxx.com/index-details?symbol=SXXP [3/21/2018].

U.STreasury(a). 10 year TIPS. https://www.treasury.gov/resource-center/

data-chart-center/interest-rates/Pages/TextView.aspx?data=realyieldYear&

year=2018[4/18/2018].

Wilmott, P. (2006). Paul Wilmott on Quantitative Finance. 2 edition.

Appendices

.1 Simulation Algorithm 1

Algorithm 1 1-Year Simulation of GBM

Input: drift parameter: µ, volatility parameter: σ, initial index value: S0, number of trading days per year: ntd

1: procedure Calculate Time Step(ntd)

2: ∆t= 1/ntd

3: procedure Simulate Brownian Motion(µ, σ, S0, ntd, ∆t)

4: simulations ←−[...] . Empty column vector, number of elements: ntd

5: simulations[1] ←− S0 .Populate the first element as S0

6: for i=2 tontd do

7: W←− generate X ∼N(0,1)

8: simulations[i] ←−simulations[i−1]∗exp

(µ−0.5σ2)∆t+σ√

∆tW return simulations

.2 Simulation Algorithm 2

Algorithm 2 Simulation of Regime Switching Stochastic Process

Input: Number of Paths: NP, number of years: NY, number of trading days per year: ntd, vector of state contingent drift parameters: µ : µT = [µLow, µM id, µHigh], vector of state contingent volatility σ : σT = [σLow, σM id, σHigh], initial index value: S0, vector of upper state boundaries (in returns): R:RT = [RLow, RM id]

1: for i=j to NP do

2: procedure First Year Simulation(µM id, σM id, S0, ntd, ∆t) . Start in Mid

3: simvec ←−run Algorithm 1(µM id, σM id, S0, ntd, ∆t)

4: hpr ←−ln

simvec[ntd]/simvec[1]

5: procedure Simulation of Remaining Years(µ, σ, S0, ntd)

6: for i=1 to NY−1do

7: if hpr ≤R[1] then . Determine the new state

8: state ←− 1

9: else if (hpr> R[1]) and (hpr ≤R[2])then

10: state ←− 2

11: else if hpr > R[2] then

12: state ←− 3

13: procedure Simulation of Next Year(µ[state], σ[state], simvec[ntd×j], ntd)

14: nextsim ←− run Algorithm 1(µ[state], σ[state], simvec[ntd×j], ntd)

15: nextsim ←− nextsim\nextsim[1] . Drop first element

16: hpr ←− ln

nextsim[ntd−1]/simvec[ntd∗j]

. Update holding period return

17: procedure Merging of Simulations(simvec,nextsim)

18: simvec ←− [simvec,nextsim] . Concatenate vectors along column axis

19: procedure Storage of Finished Simulations(simvec)

20: if j=1 then

21: allsims ←−simvec

22: else

23: allsims ←−[allsims,simvec] . Concatenate vectors/matrix along row axis return allsims

.3 State Price Matrices (STOXX)

Our State Price Matrices (STOXX)

Row sum

Implied Annual Real Riskless

v1 0 1 2

0 0.479757 0.241803 0.284056042 1.005616 -0.0056 1 0.427568 0.367918 0.210129758 1.005616 -0.0056 2 0.422755 0.380221 0.202639444 1.005616 -0.0056

v2 0 1 2

0 0.45364 0.312974 0.244648735 1.011263 -0.0056 1 0.451272 0.318647 0.241344369 1.011263 -0.0056 2 0.451057 0.319161 0.241044663 1.011263 -0.0056

v3 0 1 2

0 0.454881 0.317861 0.244199846 1.016942 -0.0056 1 0.454773 0.318119 0.244049553 1.016942 -0.0056 2 0.454764 0.318142 0.244035894 1.016942 -0.0056

v4 0 1 2

0 0.457376 0.319788 0.245488288 1.022653 -0.0056 1 0.457371 0.3198 0.245481455 1.022653 -0.0056 2 0.457371 0.319801 0.245480834 1.022653 -0.0056

v5 0 1 2

0 0.459942 0.321591 0.246863108 1.028396 -0.0056 1 0.459942 0.321591 0.246862798 1.028396 -0.0056 2 0.459942 0.321591 0.24686277 1.028396 -0.0056

v6 0 1 2

0 0.462525 0.323397 0.248249248 1.034171 -0.0056 1 0.462525 0.323397 0.248249235 1.034171 -0.0056 2 0.462525 0.323397 0.248249233 1.034171 -0.0056

v7 0 1 2

0 0.465122 0.325213 0.249643335 1.039978 -0.0056 1 0.465122 0.325213 0.249643335 1.039978 -0.0056 2 0.465122 0.325213 0.249643335 1.039978 -0.0056

v8 0 1 2

0 0.467734 0.327039 0.251045259 1.045819 -0.0056 1 0.467734 0.327039 0.25104526 1.045819 -0.0056 2 0.467734 0.327039 0.25104526 1.045819 -0.0056

v9 0 1 2

0 0.470361 0.328876 0.252455055 1.051692 -0.0056 1 0.470361 0.328876 0.252455056 1.051692 -0.0056 2 0.470361 0.328876 0.252455056 1.051692 -0.0056

v10 0 1 2

0 0.473002 0.330723 0.253872769 1.057598 -0.0056 1 0.473002 0.330723 0.25387277 1.057598 -0.0056 2 0.473002 0.330723 0.25387277 1.057598 -0.0056

vperp 0 1 2

0 40.3551 32.3719 26.7738 99.5008 0.0100 1 40.2835 32.5107 26.7066 99.5008 0.0100 2 40.2768 32.5245 26.6995 99.5008 0.0100

.4 Banz & Miller’s State Price Matrices (S&P)

Banz & Miller State Price Matrices (S&P) Our State Price Matrices (S&P)

Row sum

Implied Annual Real Riskless rate

1 2 v1 0 1 2 v1

0.226355 0.271049 0 0.5251 0.2935 0.1735 0.9921 0.0079 0

0.389234 0.164177 1 0.5398 0.2912 0.1672 0.9982 0.0018 1

0.369153 0.177747 2 0.5544 0.2888 0.1612 1.0044 -0.0044 2

1 2 v2 0 1 2 v2

0.301025 0.220487 0 0.5304 0.2897 0.1681 0.9882 0.0059 0

0.312293 0.213051 1 0.5333 0.2915 0.1693 0.9941 0.0030 1

0.310961 0.213931 2 0.5364 0.2934 0.1705 1.0003 -0.0001 2

1 2 v3 0 1 2 v3

0.305067 0.216146 0 0.5281 0.2886 0.1676 0.9843 0.0053 0

0.305841 0.215636 1 0.5313 0.2903 0.1686 0.9902 0.0033 1

0.305749 0.215696 2 0.5345 0.2921 0.1696 0.9962 0.0013 2

1 2 v4 0 1 2 v4

0.304209 0.215046 0 0.526 0.2874 0.1669 0.9803 0.0050 0

0.304262 0.215011 1 0.5291 0.2892 0.1679 0.9862 0.0035 1

0.304256 0.215015 2 0.5324 0.2909 0.1689 0.9922 0.0020 2

1 2 v5 0 1 2 v5

0.303019 0.214171 0 0.5239 0.2863 0.1662 0.9764 0.0048 0

0.303023 0.214169 1 0.527 0.288 0.1672 0.9822 0.0036 1

0.303023 0.214169 2 0.5302 0.2897 0.1682 0.9881 0.0024 2

1 2 v6 0 1 2 v6

0.301811 0.213315 0 0.5217 0.2851 0.1655 0.9723 0.0047 0

0.301812 0.213315 1 0.5249 0.2868 0.1665 0.9782 0.0037 1

0.301812 0.213315 2 0.5281 0.2886 0.1676 0.9843 0.0026 2

1 2 v7 0 1 2 v7

0.300607 0.212463 0 0.5197 0.284 0.1649 0.9686 0.0046 0

0.300607 0.212463 1 0.5228 0.2857 0.1659 0.9744 0.0037 1

0.300607 0.212463 2 0.526 0.2874 0.1669 0.9803 0.0028 2

1 2 v8 0 1 2 v8

0.299407 0.211615 0 0.5176 0.2828 0.1642 0.9646 0.0045 0

0.299407 0.211615 1 0.5207 0.2845 0.1652 0.9704 0.0038 1

0.299407 0.211615 2 0.5239 0.2863 0.1662 0.9764 0.0030 2

1 2 v9 0 1 2 v9

0.298211 0.210771 0 0.5155 0.2817 0.1636 0.9608 0.0044 0

0.298211 0.210771 1 0.5186 0.2834 0.1645 0.9665 0.0038 1

0.298211 0.210771 2 0.5218 0.2851 0.1655 0.9724 0.0031 2

1 2 v10 0 1 2 v10

0.297021 0.209929 0 0.5134 0.2806 0.1629 0.9569 0.0044 0

0.297021 0.209929 1 0.5165 0.2823 0.1639 0.9627 0.0038 1

0.297021 0.209929 2 0.5197 0.284 0.1649 0.9686 0.0032 2

1 2 vperp 0 1 2 vperp

77.04337 54.57223 0 132.5 72.41 42.05 246.96 0.0040 0

77.21835 54.45738 1 133.31 72.85 42.3 248.46 0.0040 1

77.19684 54.47189 2 134.14 73.29 42.55 249.98 0.0040 2

.5 Our State Price Matrices (S&P)

Our State Price Matrices (S&P)

Row sum

Implied Annual Real Riskless

v1 0 1 2

0 0.4986 0.2264 0.2710 0.996008 0.0040 1 0.4426 0.3892 0.1642 0.996008 0.0040 2 0.4491 0.3692 0.1777 0.996008 0.0040

v2 0 1 2

0 0.47052 0.301024942 0.22048671 0.992032 0.0040 1 0.466688 0.312293484 0.21305082 0.992032 0.0040 2 0.467141 0.310960545 0.21393076 0.992032 0.0040

v3 0 1 2

0 0.466858 0.305066962 0.21614639 0.988072 0.0040 1 0.466595 0.305840546 0.21563588 0.988072 0.0040 2 0.466626 0.305749093 0.21569624 0.988072 0.0040

v4 0 1 2

0 0.464872 0.30420912 0.21504596 0.984127 0.0040 1 0.464854 0.304262227 0.21501092 0.984127 0.0040 2 0.464856 0.30425595 0.21501506 0.984127 0.0040

v5 0 1 2

0 0.46301 0.30302 0.21417 0.980199 0.0040 1 0.46301 0.30302 0.21417 0.980199 0.0040 2 0.46301 0.30302 0.21417 0.980199 0.0040

v6 0 1 2

0 0.461159 0.301811457 0.21331508 0.976286 0.0040 1 0.461159 0.301811715 0.21331492 0.976286 0.0040 2 0.461159 0.301811685 0.21331494 0.976286 0.0040

v7 0 1 2

0 0.459318 0.300606736 0.21246345 0.972388 0.0040 1 0.459318 0.30060676 0.21246344 0.972388 0.0040 2 0.459318 0.300606758 0.21246344 0.972388 0.0040

v8 0 1 2

0 0.457484 0.299406715 0.21161529 0.968506 0.0040 1 0.457484 0.299406724 0.21161529 0.968507 0.0040 2 0.457484 0.299406724 0.21161529 0.968507 0.0040

v9 0 1 2

0 0.455658 0.298211478 0.21077051 0.96464 0.0040 1 0.455658 0.298211485 0.21077052 0.96464 0.0040 2 0.455658 0.298211485 0.21077052 0.96464 0.0040

v10 0 1 2

0 0.453839 0.297021011 0.20992911 0.960789 0.0040 1 0.453839 0.297021018 0.20992912 0.960789 0.0040 2 0.453839 0.297021018 0.20992912 0.960789 0.0040

vperp 0 1 2

0 117.884 77.04336974 54.5722318 249.4996 0.0040 1 117.8239 77.2183501 54.4573773 249.4996 0.0040 2 117.8309 77.19683818 54.4718923 249.4996 0.0040

.6 Sensitivity Analysis State Prices

LOW -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.08 0.377 0.327 0.280 0.238 0.199 0.165 0.135 0.109 0.087 0.068 0.053 0.040 0.1 0.409 0.367 0.326 0.289 0.253 0.220 0.190 0.163 0.139 0.117 0.098 0.081 0.12 0.432 0.395 0.360 0.326 0.294 0.264 0.235 0.209 0.185 0.162 0.142 0.123 0.14 0.450 0.417 0.386 0.355 0.326 0.298 0.272 0.247 0.223 0.201 0.180 0.161 0.16 0.464 0.435 0.406 0.379 0.352 0.326 0.301 0.278 0.255 0.234 0.214 0.195 0.18 0.476 0.449 0.423 0.398 0.373 0.349 0.326 0.304 0.282 0.262 0.242 0.224 0.2 0.487 0.462 0.438 0.414 0.391 0.369 0.347 0.326 0.306 0.286 0.268 0.250 0.22 0.496 0.473 0.450 0.428 0.407 0.386 0.365 0.345 0.326 0.308 0.290 0.272 0.24 0.505 0.483 0.462 0.441 0.421 0.401 0.381 0.362 0.344 0.326 0.309 0.292 0.26 0.512 0.492 0.472 0.452 0.433 0.414 0.396 0.378 0.360 0.343 0.326 0.310 0.28 0.520 0.500 0.481 0.462 0.444 0.426 0.408 0.391 0.374 0.358 0.342 0.326 0.3 0.526 0.508 0.490 0.472 0.454 0.437 0.420 0.404 0.387 0.372 0.356 0.341 MID -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.08 0.5386 0.5568 0.5686 0.5734 0.5711 0.5618 0.5458 0.5237 0.4963 0.4644 0.4292 0.3917 0.1 0.4581 0.4681 0.4742 0.4763 0.4743 0.4682 0.4582 0.4446 0.4276 0.4078 0.3855 0.3613 0.12 0.3955 0.4013 0.4045 0.4053 0.4035 0.3991 0.3924 0.3834 0.3722 0.3591 0.3443 0.3280 0.14 0.3466 0.3499 0.3516 0.3517 0.3501 0.3468 0.3420 0.3356 0.3278 0.3187 0.3083 0.2969 0.16 0.3076 0.3096 0.3105 0.3101 0.3087 0.3061 0.3025 0.2977 0.2920 0.2853 0.2778 0.2694 0.18 0.2761 0.2773 0.2776 0.2771 0.2758 0.2737 0.2708 0.2671 0.2627 0.2577 0.2519 0.2456 0.2 0.2502 0.2508 0.2508 0.2502 0.2490 0.2472 0.2449 0.2419 0.2385 0.2345 0.2300 0.2251 0.22 0.2285 0.2288 0.2286 0.2279 0.2268 0.2253 0.2233 0.2209 0.2181 0.2149 0.2113 0.2073 0.24 0.2101 0.2102 0.2099 0.2092 0.2082 0.2068 0.2051 0.2031 0.2008 0.1981 0.1952 0.1919 0.26 0.1944 0.1943 0.1939 0.1932 0.1923 0.1911 0.1896 0.1879 0.1859 0.1836 0.1812 0.1785 0.28 0.1807 0.1805 0.1801 0.1794 0.1786 0.1775 0.1762 0.1747 0.1729 0.1710 0.1689 0.1666 0.3 0.1688 0.1685 0.1681 0.1674 0.1666 0.1656 0.1645 0.1631 0.1616 0.1599 0.1581 0.1561 HIGH -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.08 0.0945 0.1163 0.1411 0.1692 0.2003 0.2343 0.2708 0.3094 0.3495 0.3906 0.4319 0.4727 0.1 0.1430 0.1652 0.1894 0.2154 0.2430 0.2722 0.3025 0.3339 0.3658 0.3981 0.4303 0.4621 0.12 0.1825 0.2035 0.2256 0.2488 0.2729 0.2978 0.3234 0.3494 0.3756 0.4019 0.4281 0.4539 0.14 0.2137 0.2329 0.2527 0.2732 0.2943 0.3158 0.3376 0.3595 0.3816 0.4036 0.4255 0.4470 0.16 0.2383 0.2556 0.2734 0.2915 0.3099 0.3286 0.3474 0.3663 0.3852 0.4040 0.4226 0.4409 0.18 0.2577 0.2733 0.2892 0.3053 0.3216 0.3379 0.3544 0.3708 0.3872 0.4035 0.4195 0.4354 0.2 0.2731 0.2872 0.3014 0.3158 0.3303 0.3448 0.3593 0.3737 0.3881 0.4023 0.4164 0.4302 0.22 0.2855 0.2982 0.3110 0.3239 0.3368 0.3497 0.3626 0.3754 0.3881 0.4007 0.4131 0.4253 0.24 0.2954 0.3069 0.3185 0.3301 0.3417 0.3533 0.3648 0.3762 0.3876 0.3988 0.4098 0.4207 0.26 0.3033 0.3138 0.3243 0.3348 0.3453 0.3557 0.3661 0.3764 0.3865 0.3966 0.4065 0.4162 0.28 0.3097 0.3193 0.3288 0.3384 0.3479 0.3573 0.3667 0.3760 0.3851 0.3942 0.4031 0.4119 0.3 0.3148 0.3236 0.3323 0.3410 0.3496 0.3582 0.3667 0.3751 0.3834 0.3916 0.3997 0.4076

.7 1-Year State Price Matrix for Perpetual Matrix

v1 0 1 2

0 0.4428 0.2419 0.3053

1 0.3756 0.3723 0.2422

2 0.3692 0.3853 0.2355