• Ingen resultater fundet

Bilag I- Litteraturoversigt

Bilag II- SOP for Koncentrationsmåling af peroxysyrer Bilag III- Sikkerhedsdatablade for kemikalier

Bilag IV-Business case

Bilag V- Artikel om PAA og PFA

Bilag 1-Litteraturoversigt

Bilag 1-Litteraturoversigt

1.1 Hypochlorite ... 2 1.1.1 Analytical method ... 2 1.1.2 Disinfection effect ... 3 1.1.3 Toxicity and residual by-products ... 5 1.2 Chlorine dioxide (ClO2) ... 6 1.2.1 Analytical method ... 6 1.2.2 Disinfection effect ... 8 1.2.3 Toxicity and residual by-products ... 10 1.3 Peracetic Acid (PAA) ... 11 1.3.1 Analytical method ... 11 1.3.2 Disinfection effect ... 13 1.3.3 Toxicity and residual by-products ... 16 1.4 Performic Acid (PFA) ... 17 1.4.1 Analytical method ... 17 1.4.2 Disinfection effect ... 18 1.4.3 Toxicity and residual by-products ... 19 1.5 Hydrogen peroxide (H2O2) ... 19 1.5.1 Analytical method ... 19 1.5.2 Toxicity and residual by-products ... 20 1.6 Permanganate ... 21 1.6.1 Analytical method ... 21 References ... 22

1.1 Hypochlorite 1.1.1 Analytical method

Reference Method/ Principle Concentration Range Source/ Remarks

Morris R.(1993) Titration with sodium thiosulphate 1,7-20 mg/L Secondary Effluent

Veschetti et al. (2003)

Titration with sodium thiosulphate/

DPD-method from APHA 0,5- 4,0 mg/L (5 % and 15%)

Effluent from activated sludge treatment plant

Tree et al. (2003) DPD-method from APHA 8, 16, 30 mg/L (14% NaClO) Primary effluent

Junli et al. (1997) Iodimetry (??) 1 mg/L-3 mg/L Lab water

Tsai and Lin (1999) DPD-method from APHA 10, 20, 30, 40, 50, 100, 200, 400 mg/L Hospital waste sludge

Arana et al.(2000) DPD-method 1-2 mg/L

Secondary effluent (Microquant kit, Merck 14826 Chlor-test)

Crebelli et al. (2005)

Titration with sodium thiosulphate/ DPD

method 2, 4, 4.1 mg/L

Secondary effluent/ FeSO4 added to neutralize remaining disinfectant

Boczek et al. (2010) DPD-method from APHA 2 and 5 mg/L

Blended primary and secondary effluent to represent wet-weather events

1.1.2 Disinfection effect

Reference Dose (mg/l) Time (min) Effectiveness Source Remarks

Morris R. (1993) 5

20

4 log Total coliforms 4 log Faecal coliforms 1 log poliovirus type 2

Secondary Effluent

2 log reduction on virus achieved after 30 min (Other concentration

has been used (1,7-20 mg/L) with figure only)

Veschetti et al.(2003)

0.53 20 1-log E.coli Effluent from activated

sludge treatment plant

90% removal of each organisms

0.35 30 1-log E.coli Effluent from activated

sludge treatment plant 0.3 20 1-log Faecal streptococci Effluent from activated sludge treatment plant 0.17 30 1-log Faecal streptococci Effluent from activated sludge treatment plant 1.8 20 1- log Bacteriophages anti E.

coli

Effluent from activated sludge treatment plant 1.2 30 1- log Bacteriophages anti E.

coli

Effluent from activated sludge treatment plant

Coronel- Olivares et al.

(2011)

8 20

0.54 log E.coli 0.56 log Total coliform

0.72 log Enterococcus

Secondary Effluent

Concentration of hypochlorite stock solution was 11% NaClO

8 30

0.75 log E.coli 0.78 log Total coliform

1 log Enterococcus

Secondary Effluent

20 20

0.55 log E.coli 0.67 log Total coliform

1 log Enterococcus

Secondary Effluent

20 30

0.77 log E.coli 0.83 log Total coliform

1 log Enterococcus

Secondary Effluent

30 20

0.75 log E.coli 0.79 log Total coliform

1 log Enterococcus

Secondary Effluent

30 30 0.87 log E.coli

0.85 log Total coliform Secondary Effluent

Nearly 2 log Enterococcus

Tree et al. (2003)

8 5

4 log E. coli 1.5 log Enterococci No inactivation of enterovirus

& FRNA bacteriophage

Primary effluent

14%NaClO (parallel experiment was conducted with same but sterilized sample with seeded organisms and

found almost same result)

16 5

>4.5 log E. coli

>3 log Enterococci (complete)

<0.5 log enterovirus

<0.5 log FRNA bacteriophage

Primary effluent

30 5

5 log E. coli (complete)

>3 log Enterococci (complete) 1 log enterovirus 0.5 log FRNA bacteriophage

Primary effluent

Junli et al. (1997) 1.8 20 2 log E. coli Lab Water

pH 7.0, Temp 200 C

3 20 3 log E. coli Lab Water

3 20 3 log E. coli (Domestic) wastewater

Arana et al. (2000) 1-2 15 Secondary effluent Sodium thiosulphate (1.46 mg/mL)

to neutralize remaining disinfectant

Boczek et al. (2010)

2 30

log E. coli log Enterococci log MS2 coliphage

Blended primary and secondary effluent to represent wet-weather

events Sodium thiosulphate added to neutralize remaining disinfectant

5 30

log E. coli log Enterococci log MS2 coliphage

Blended primary and secondary effluent to represent wet-weather

events

USEPA, (1999)

2.6 3 3 log Total coliforms CSOs in Philadelphia (??) Disinfection of combined sewer overflows USEPA, 1973

8.0-10.8 6 4 log total coliform

4 log fecal coliform

CSOs in Gross point woods Michigan (??)

Disinfection of combined sewer overflows USEPA, 1974

25 2 5 log poliovirus

5 log coliphage

CSOs in Lake Onondaga, New York

Disinfection of combined sewer overflows USEPA, 1979

1.1.3 Toxicity and residual by-products

Reference Ecotoxicity measured By-products Conditions/ Source

Remarks

Bayo et al. (2009) Toxic to Vibrio fischeri Biological treated

wastewater

Positive correlation between toxicity and chlorine concentrations Asami et al. (1996) Toxic to Photobacterium phosphoreum

(Microtox) Wastewater effluents High residual chlorine in

recipient Katsoni et al. (2014) Toxic to Artemia salina

trihalomethanes (THMs), haloacetonitriles (HANs),

haloketons (HKs), 1,2-dichloroethane (DCA)

Wastewater effluent from industry

Experiment conducted in pilot scale

Petala et al. (2009) Toxic to rainbow trout Secondary effluent

Biochemical biomarkers (total Glutathione) were measured in liver and kidney of Rainbow trout

after chlorination Pignata et al. (2012) Toxic to Vibrio fischeri, Daphnia magna,

and Pseudokirchneriella subcapitata trihalomethanes (THMs) Wastewater effluents Cao et al. (2009)

Toxic to Daphnia magna and Genotoxic to Salmonella typhimurium (TA

1535/pSK1002)

Secondary effluent

Emmanuel et al. (2004) Toxic to Vibrio fischeri and Daphnia magna

Hospital wastewater effluent

A good linear regression between EC50

of D. magna and AOX Bellana and Bailey (1977) Toxic to aquatic environment Wastewater effluent Major fish kill in James

river Glaze and Henderson

(1975)

Formation of

organochlorine compounds Secondary effluent Pasternak et al. (2003) Chloramine: Toxic to aquatic

environment Surface water

Kim et al. (1999) Weak mutagenic activity to Salmonella

typhimurium TA 100 Lab water

1.2 Chlorine dioxide (ClO

2

) 1.2.1 Analytical method

Reference Method/ Principle Concentration Range Source/Remarks

Veschetti et al. (2003) DPD colorimetric method (APHA, AWWA and

WEF) 0,5-4,0 mg/L Effluent from activated sludge

treatment plant

Ayyildiz et al. (2009) DPD method 1-3 mg/L

Raw wastewater Secondary effluent Artificial wastewater

USEPA, (1999)

DPD test kits ( Standard method 4500 ClO2 G)

>0.1 mg/L

Table 4-3, page 4-30 (reference taken from Gates, 1998, The

Chlorine dioxide handbook:

water disinfection series.) DPD- FAS titrimetric method (Standard

method 4500 ClO2 D)

>0.1 mg/L

Table 4-3, page 4-30(reference taken from Gates, 1998, The

Chlorine dioxide handbook:

water disinfection series.) Amperometric method II- (Standard method

4500 ClO2 E) >0.1 mg/L

Table 4-3, page 4-30(reference taken from Gates, 1998, The

Chlorine dioxide handbook:

water disinfection series.)

Ayyildiz et al. (2011) DPD method 1-2 mg/L

Raw wastewater Secondary effluent Artificial wastewater Churet et al. (2001) Lissamine green B reagent

(spectrophotometric method) Only Ct value

Deionized distilled water (No interferences from chlorine,

chlorite and chlorate on measurement)

Junli et al. (1997) Iodimetry (??) 1 mg/L-3 mg/L Lab water

Tsai and Lin (1999) DPD-method from APHA 10, 20, 30, 40, 50, 100, 150 mg/L Hospital waste sludge (to verify free of chlorine) Tsai and Lin (1999) Titration with thiosulphate 10, 20, 30, 40, 50, 100, 150 mg/L Hospital waste sludge

Narkis et al. (1995) Amperometric titration using phenylarsine

oxide (PAO) cartridge 28.54, 35.53, 44.20, 52,58 mg/L Effluent from activated sludge

Hey et al. (2012)A DPD method 0.5- 20 mg/L Biologically treated wastewater

1.2.2 Disinfection effect

Reference Dose (mg/l) time (min) Effectiveness Source Remarks

De Luca et al. (2008)

1.5 18-20

0.49 log E. coli 0.33 log Enterococci 0.49 log E. coli0157 phages 0.44 log F+ bacteriophages

Secondary effluent 1st phase of experiment

2 18-20

1.31 log E. coli 0.51 log Enterococci 0.63 log E. coli0157 phages 0.82 log F+ bacteriophages

Secondary effluent 2nd phase of experiment

Stampi et al. (2002)

2.2 20 >3 log E. coli

<2 log Enterococci Secondary effluent

1st series

(pH 6.4, SS 26mg/l,COD 37.9 mg/l)

2.2 20 >3 log E. coli

>2 log Enterococci Secondary effluent

2nd series (Agitator installed) (pH 6.4, SS 13mg/l,COD 25.5

mg/l)

Junli et al. (1997) 1.4 20 2 log E. coli Lab Water pH 7.0, Temp 200 C

3 20 3 log E. coli Lab Water pH 7.0, Temp 200 C

2.5 20 3 log E. coli (Domestic) wastewater pH 7.0, Temp 200 C

Ayyildiz et al. (2009)

1 10 2.8 log E. coli*

>2 log Total coliform Secondary effluent

*12.5mg/L COD (50mg/l COD-

<1 log removal) Highly depended on COD

Ct curve available

2 10 3.6 log E. coli*

>2.5 log Total coliform Secondary effluent

*12.5mg/L COD (50mg/l COD- 1.6 log removal) Highly depended on COD

3 10 4.2 log E. coli*

>2.8 log Total coliforms Secondary effluent

*12.5mg/L COD (50mg/l COD- 2.4 log removal) Highly depended on COD

1 10 0.8 log E. coli*

>1 log Total coliform Raw wastewater

*75mg/L COD (300mg/l COD-

<0.4 log removal) Highly depended on COD

2 10 3.2 log E. coli*

>3 log Total coliform Raw wastewater *75mg/L COD (300mg/l COD- 0.4 log removal)

Highly depended on COD

3 10 5.2 log E. coli*

>4 log Total coliform Raw wastewater

*75mg/L COD (300mg/l COD-

>0.8 log removal) Highly depended on COD USEPA, (1999)

2 15 0,5 log Total coliform Secondary effluent Figure 4-4, page 4-19 (original source: Roberts et al., 1980)

5 15 >2 log Total coliform Secondary effluent

10 15 >4 log Total coliform Secondary effluent

Wojtenko et al. (2003) 8 5 >4 log 4 log coliform

3 log f2 and T4 phages

CSO disinfection pilot

study (Phase 1) 54 mg/l Suspended Solids

Ayyildiz et al. (2011)

1 10 1.4 log E. coli

1.2 Log Total coliform Secondary effluent

20 mg/l COD in effluent Ultrasound and ClO2 had

higher log removal of organisms

2 10 <1 log E. coli

<1 Log Total coliform Raw wastewater

150 mg/l COD in wastewater Ultrasound and ClO2 had

higher log removal of organisms Narkis et al. (1995) 28.54 120 4-5 log Total coliform

5 log enterococci

Effluent from activated sludge

Enriched with 400 mg/l suspended solids (after crushing (disinfection) SS 1-2

logs of orgs recovered)

Alcalde et al. (2008)

5 60 4.7 log E. coli

2.1 log somatic bacteriophages Secondary effluent

Secondary effluents reclaimed by pre-treatment

system(Ring filter) prior disinfection

5 60 3.8 log E. coli

1.8 log somatic bacteriophages Secondary effluent

Secondary effluents reclaimed by pre-treatment

system(Physico-chemical system) prior disinfection

5 60 1.7 log E. coli

0.2 log somatic bacteriophages Secondary effluent

Secondary effluents reclaimed by pre-treatment

system(Infiltration-percolation) prior disinfection Chauret et al. (2001) Ct 1000

mg.min/L

0.5-2.0 log Cryptosporidium parvum

Deionized distilled water

Salgot et al. (2002)

3 10 2.39 log fecal coliform

Secondary effluent

Infiltration- percolation after secondary treatment

8 10 4.84 log fecal coliform Ring filter after secondary

treatment

9 55 4.24 log fecal coliform Sand filter after secondary

treatment

1.2.3 Toxicity and residual by-products

Reference Ecotoxicity measured By-products Conditions/ Source

Remarks

Svecevicius et al. (2005) Rainbow trout (96-h LC50) 2.2 mg/L for larvae

8.3 mg/L for adult fish Chlorite Lab water

Chlorite was 48 times less toxic to larvae and 18 times less toxic to

adult fish than chlorine dioxide Kim et al. (1999) No mutagenic activity to Salmonella

typhimurium TA 100 Chlorate Lab water

Collivignarelli et al.

(2000)

Chlorite and

chlorate Secondary effluent

Dabrowska at al. (2003) Aldehydes

Ground water, surface water and shallow

ground water

Korn et al. (2002) Chlorite and

chlorate Drinking water

Lee et al. (2004) Chlorite and

chlorate Drinking water

After 120 min, 70-80% chlorine dioxide was converted to chlorite

and 10% converted to chlorate

Katz and Narkis. (2001) Chlorite and

chlorate Lab water Ferrous salt was used to remove chlorite and chlorate

1.3 Peracetic Acid (PAA) 1.3.1 Analytical method

Reference Method/ Principle Concentration Range Source/ Remarks

Veschetti et al. (2003) Iodometric analysis- Starch Indicator/

DPD-method from APHA 0,5- 4,0 mg/L (5 % and 15%) Effluent from activated sludge treatment plant

Di Furia et al. (1984) Reaction with organic sulphide, Gas-liquid

Chromatographic method ¨800 mg/L Not mentioned

Frew et al. (1983)

5 spectroscopic methods: 4 methods for sum of peroxides. 1 method selective for

H2O2 (Horseradish peroxidase)

0,08 mg/L - 0,8 mg/L Water

Morrris R. (1993) Titration with sodium thiosulphate 6,1-27,2 mg/L Secondary effluent

Crebelli et al. (2005) Titration with sodium thiosulphate/ DPD

method 2, 4, 4.1 mg/L Secondary effluent/ FeSO4 added to

neutralize remaining disinfectant

Hey et al. (2012)A DPD method 2.5-50 mg/L

Biologically treated wastewater [-PAA concentration was calculated by

converting standard curve of total chlorine (Cl2).

-Oxidation of DPD by PAA was done in neutral pH to prevent the oxidation from

H2O2] Pinkernell et al. (1997)

2, 2’’-azino-bis [3-ethylbenzothiazoline-6-sulfonic acid] diammonium salt (ABTS)

colorimetric method

0.75-7.6 mg/L Lab water (no influence from H2O2) Pinkernell et al. (1994) High performance liquid chromatography

(HPLC) 10-2000 mg/L Lab water

Kemira, (1999) High performance liquid chromatography

(HPLC) 7.6-1141 mg/L Lab water (6.8-340 mg/L H2O2 can also

be measured from this method)

Wagner et al. (2002)

2, 2’’-azino-bis [3-ethylbenzothiazoline-6-sulfonic acid] diammonium salt (ABTS)

colorimetric method with horseradish peroxidase (HRP)

0.5-100 mg/L

Physicochemically treated effluent Colorimetric method measured both PAA and H2O2 so the concentration of

PAA was determined by measuring absorbance of ABTS+PAA+H2O2 and subtracting it to the abs of ABTS+H2O2+

(PAA quenched by thiosulphate)

Kemira, (2006)

2 step titration method with ammonium cerium sulphate for H2O2 and with

thiosulphate for PAA/PFA

>1g/L Lab water

Antonelli et al. (2006) DPD colorimetric method after

decomposing H2O2 by catalase 2-15 mg/L

Secondary effluent Initial concentration of PAA was determined by titration (??method not

mentioned)

Trujillo et al. (2008) Standard method, 1998 0.3-5.0 mg/L Spring water contaminated with

wastewater Gehr et al. (2003)

2, 2’’-azino-bis [3-ethylbenzothiazoline-6-sulfonic acid] diammonium salt (ABTS) and

horseradish peroxidase

1.5-6.0 mg/L

Primary treated effluent (measures total peroxy compounds concentration i.e.

PAA and /or H2O2)

1.3.2 Disinfection effect

Reference Dose (mg/l) time (min) Effectiveness Conditions/ Source Remarks

Veschetti et al. (2003)

0.51 20 1-log E.coli

Effluent from activated

sludge treatment plant 90% removal of each organisms

0,34 30 1-log E.coli

1.0 20 1-log Faecal streptococci

0,7 30 1-log Faecal streptococci

1.4 20 1- log Bacteriophages anti E.

coli

1.0 30 1- log Bacteriophages anti E.

coli

Luna-Pabello et al.

(2009)

90* 30-60 4-7 log Faecal Coliform Raw waste water *Ag:Cu:PAA-1.2:12.0:90.0 (30-60 min)

20** 10-20 3-5 log FC Secondary effluent **Ag:Cu:PAA-0.1:1.0:20.0

(10-20 min)

10*** 10 1-2 log FC Tertiary effluent ***Ag:Cu:PAA-0.05:0.5:10.0

(10min) Liberti and Notarnicola

(1999)

10 30 3.4 log total coliform *Clarified filtered feeds *treatment after secondary clarifier in pilot plant

400 20 5 log Total Coliform

Thomas et al. (1990)

10 5 0.96 log Total Coliform

0.17 log Faecal Streptococci

Raw Waste Water (Average SS 237mg/l

BOD 196 mg/l)

*Conference paper Experiment was also conducted

on simulated storm water but data is not clear

15 5

1.42 Log Total Coliform 0.91 Log Faecal Streptococci

20 5 2.74 log Total Coliform

1.75 log Faecal Streptococci

De Luca et al. (2008)

1.5 18-20

1.42 log E. coli 0.32 log Enterococci 0.64 log E. coli0157 phages 0.48 log F+ bacteriophages

Secondary effluent 1st phase of experiment

1,5 18-20

1.76 log E. coli 0.44 log Enterococci 0.60 log E. coli0157 phages 0.56 log F+ bacteriophages

Secondary effluent 2nd phase of experiment

Baldry et al. (1991) 10-15 5 5 log E. coli

5 log Streptococci faecalis Demineralised water

25-30 5 4 log Bacteriophages øx174

Trujillo et al. (2008) 0.8 (10 min) 10 100% elimination of faecal coliforms

Spring water contaminated with Waste

water

Initial concentration of faecal coliforms and total coliforms

are 13 cfu/100 ml and 65 cfu/100 ml respectively 2.0 (10 min) 10 100% elimination of total

coliforms

Morris R. (1993) 5 20

4 log Total coliforms 4 log Faecal coliforms

<1 log poliovirus type 2

Secondary effluent 6,1-27,2 mg/L has been used for overall experiment

Bailey et al. (2011) 4-5 15 >3 log E. coli

>3 log Enterococci

Mixture of Raw sewage and shallow groundwater

Stampi et al. (2002)

2 20 >2 log E. coli

>1 log Enterococci Secondary effluent

1st series

(pH 6.4, SS 25mg/l,COD 38.5 mg/l)

2 20 >3 log E. coli

>2 log Enterococci Secondary effluent

2nd series (Agitator installed) (pH 6.4, SS 12mg/l,COD 28

mg/l)

Alcalde et al. (2008)

8.5 11 3.9 log E. coli

1.8 log somatic bacteriophages Secondary effluent

Secondary effluents reclaimed by pre-treatment system(Ring

filter) prior disinfection

8.5 11 3.8 log E. coli

1.6 log somatic bacteriophages Secondary effluent

Secondary effluents reclaimed by pre-treatment system(Physico-chemical system) prior disinfection

8.5 11 1.9 log E. coli

0.2 log somatic bacteriophages Secondary effluent

Secondary effluents reclaimed by pre-treatment system(Infiltration-percolation)

prior disinfection

Zanetti et al. (2007)

1.2 20

1.78 log E. coli 0.41 log Enterococci 0.45 log F+coliphages

Secondary effluent COD 25.99 mg/l, Suspended solids 17mg/l

1.5 20

2.43 log E. coli 0.66 log Enterococci 0.60 log F+ coliphages

Secondary effluent COD 28.34 mg/l, Suspended solids 6.10 mg/l Antonelli et al. (2006) 2 12 <1 log Fecal coliform Secondary effluent Data on E. coli was not shown.

5 12 1.5 log Fecal coliform Secondary effluent Experimental work was focused on possible regrowth of organisms after disinfection with and without destruction

of residual PAA

10 12 >1.5 log Fecal coliform Secondary effluent

15 12 >2 log Fecal coliform Secondary effluent

Koivunen and Heionnen-Tanski (2005)

10-15 27 3-4 log total coliform

3-4 log Enterococci Primary effluent In article, different concentration of PAA (2, 3, 5, 7,

10, 15) and contact time (4, 8, 13, 18, 23, 27 min) has been used which results different log

removal

*Effluent from sand filter

2-7 27 3 log total coliform

3 log Enterococci Secondary effluent

2-7 27 3 log total coliform

>2.5 log Enterococci Tertiary effluent*

Salgot et al. (2002)

15 10 2.21 Fecal coliform (IP)

Secondary effluent

Infiltration- percolation after secondary treatment

30 10 4.43 fecal coliform (RF) Ring filter after secondary

treatment

30 10 4.33 log Fecal coliform (SF) Sand filter after secondary

treatment

Pedersen et al. (2013) 0-4.8 6-37 0.4-2.2 log E. coli Tertiary Sand filter Article published by Aarhus Vand

Gehr et al. (2003) 4.5 60 1 log Enterococci Primary treated effluent

1.3.3 Toxicity and residual by-products

Reference Ecotoxicity measured By-products Conditions/ Source

Remarks

Kemira, (2012a)

Oncorhynchus mykiss (rainbow trout) LC50/96 h:6,7 mg/L

Daphnia EC50/42 h/: 3,4 mg/l Desmodesmus subspicatus (green algae)

ErC50/72 h/: 31 mg/l

Safety data sheet, Fennosan PAA Terrel Y (1987) Daphnia magna EC50: 0,7 mg/L

Gardner and Bucksath, (1996)

Oncorhynchus mykiss (rainbow trout) LC50: 1,6 mg/L

1.4 Performic Acid (PFA) 1.4.1 Analytical method

Reference Method/ Principle Concentration Range Remarks

Gehr et al. (2009)

ABTS-HRP colourimetric assay 1-6mg/l Buffer 6 (indirect method)

Idometric and ammonium cerium sulphate

titration Primary effluent (direct method)

Ragazzo et al. (2013)

2 step titration method with ammonium cerium sulphate for H2O2 and with

thiosulphate for PFA

1-5 mg/l Secondary Effluent

Kemira, (2006)

2 step titration method with ammonium cerium sulphate for H2O2 and with

thiosulphate for PAA/PFA

>1 g/L Lab water

Kemira, (1999) High performance liquid chromatography

(HPLC) 7.6-1141 mg/L

Lab water (6.8-340 mg/L H2O2 can also be measured from this

method) Heinonen-Tanski and Miettinen

(2010)

2 step titration method with ammonium cerium sulphate for H2O2 and with

thiosulphate for PFA

0.01-40 mg/L Lab water (Organisms were spiked in lab water)

1.4.2 Disinfection effect

Reference Dose (mg/l) Time (min) Effectiveness Conditions/ Source Remarks

Gehr et al. (2009)

0,5 5 2,70 log fecal coliforms

Primary Effluent

4 10 >6 log fecal coliforms

5-6 90 4-6 log Enterococcus

Ragazzo et al. (2013)

1 10 0.3 log Enterococcus

2.6 log E.coli

Secondary clarifier outlet

Batch trials (ct available)

1 30-60 1.9 log Enterococcus

2.7 log E. coli

3 10 1.9 log Enterococcus

2,4 log E. coli

3 30-60 1.9 log Enterococcus

3.0 log E. coli

5 10 1.9 log Enterococcus

2.6 log E. coli

5 30-60 1.9 log Enterococcus

2.9 log E. coli

Karpova et al. (2013)

0.4-0.5 Not defined 1 log E. Coli 1 log Entercoccus

Secondary effluent

Case Finland 1.7-2.2 Not defined 1 log DNA-coliphages

3.5 Not defined 1 log MS2 oliphages 2-10 5 min (to get 50

mg·minl-1 Ct)

>3 log fecal coliform,

Enterococcus, Salmonella Case Mexico

Heinonen-Tanski and

Miettinen (2010) 2.56 5 min 4.41 log E. coli (ATCC 13706) 3.39 log S. typhimurium

Lab spiking experiment to determine positive growth

Tested on low temperature (2.5°C)

1.4.3 Toxicity and residual by-products

Reference Ecotoxicity measured By-products Conditions/ Source

Remarks

Kemira, (2012b)

Formic acid: Danio rerio (zebrafish) LC50/96 h 203 to 130 mg / L Daphnia magna EC50/48 h 365 mg / L

Hydrogen Peroxide:

Pimephales promelas (fathead minnow) LC50/96 h :16.4 mg / L

Daphnia EC50/48 h: 2.4 mg /L

Not available for PFA

1.5 Hydrogen peroxide (H

2

O

2

) 1.5.1 Analytical method

Reference Method/ Principle Concentration Range Source/ Remarks

Kemira, (2006)2006 Titration with ammonium cerium sulphate

for H2O2 >1g/L Lab water

DHI, (2010) DPD method with peroxidase 0.005-0.1 mg/L Treated wastewater

Badar et al (1988) DPD method with peroxidase 0.3µg/L- Distilled, drinking, different types of surface water and rain water Gehr et al. (2009) Titration with ammonium cerium sulphate

for H2O2 Primary effluent

Pedersen et al. (2013) DPD method with peroxidase >5-10µg/L Tertiary Sand filter (Article from Aarhus vand)

1.5.2 Toxicity and residual by-products

Reference Ecotoxicity measured By-products Conditions/ Source

Remarks

MacPhee and Ruelle, (1969)

Oncorhynchus kisutch (Coho salmon) LC50/96 h: 10 mg/L

Shurtleff, (1989)

Pimephales promelas (Fathead minnow) LC50: 16,4 mg/L

Daphnia pulex EC50/48 h: 4,2 mg/L

Kay et al. (1982) Microcystis 1.7 mg/L Chlorophyll reduced to

<5% after 48 h

1.6 Permanganate 1.6.1 Analytical method

Reference Method/ Principle Concentration Range Remarks

APHA, (2012) Spectrophotometric method -4500 0.5-100 mg/L Expected abs for

1 mg/L= 0.016

References

Alcalde, L., Folch, M., Tapias, J.C., Martínez, F., Enguídanos, S., Bernácer, I., 2008. Secondary effluent reclamation: Combination of pre-treatment and disinfection technologies. Water Sci. Technol. 57, 1963–1968.

Antonelli, M., Rossi, S., Mezzanotte, V., Nurizzo, C., 2006. Secondary effluent disinfection: PAA long term efficiency, Environmental Science and Technology.

APHA, 2012. Standard Methods for the Examination of water and wastewater (22nd Edition). American Public Health Association /American Water Works Association/Water Environment Federation, Washington DC, USA.

Arana, I., Santorum, P., Muela, A., Barcina, I., 2000. Effect of disinfection upon dissolved organic carbon (DOC) in wastewater: bacterial bioassays. Lett.

Appl. Microbiol. 31, 157–162.

Ayyildiz, O., Ileri, B., Sanik, S., 2009. Impacts of water organic load on chlorine dioxide disinfection efficacy. J. Hazard. Mater. 168, 1092–1097.

Ayyildiz, O., Sanik, S., Ileri, B., 2011. Effect of ultrasonic pretreatment on chlorine dioxide disinfection efficiency. Ultrason. Sonochem. 18, 683–688.

Bader, H., Sturzenegger, V., Hoigné, J., 1988. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water Res. 22, 1109–1115.

Bailey, M.M., Cooper, W.J., Grant, S.B., 2011. In situ disinfection of sewage contaminated shallow groundwater: a feasibility study. Water Res. 45, 5641–53.

Baldry, M.G.C., French, M.S., Slater, D., 1991. The Activity of Peracetic Acid on Sewage Indicator Bacteria and Viruses. Water Sci. Technol. 24, 353–

357.

Bayo, J., Angosto, J.M., Gómez-López, M.D., 2009. Ecotoxicological screening of reclaimed disinfected wastewater by Vibrio fischeri bioassay after a chlorination-dechlorination process. J. Hazard. Mater. 172, 166–171.

Bellanca, M.A., Bailey, D.S., 1977. Effects of chlorinated effluents on aquatic ecosystem in the lower James River. J. Water Pollut. Control Fed. 49, 639–

645.

Boczek, L. a, Johnson, C.H., Meckes, M.C., 2010. Chlorine disinfection of blended municipal wastewater effluents. Water Environ. Res. 82, 2373–2379.

Cao, N., Yang, M., Zhang, Y., Hu, J., Ike, M., Hirotsuji, J., Matsui, H., Inoue, D., Sei, K., 2009. Evaluation of wastewater reclamation technologies based on in vitro and in vivo bioassays. Sci. Total Environ. 407, 1588–97.

Chauret, C.P., Radziminski, C.Z., Lepuil, M., Creason, R., Andrews, R.C., 2001. Chlorine Dioxide Inactivation of Cryptosporidium parvum Oocysts and Bacterial Spore Indicators. Appl. Environ. Microbiol. 67, 2993–3001.

Collivignarelli, C., Bertanza, G., Pedrazzani, R., 2000. A comparison among different wastewater disinfection systems: Experimental results. Environ.

Technol. 21, 1–16.

Coronel-Olivares, C., Reyes-Gómez, L.M., Hernández-Muñoz, A., Martínez-Falcón, A.P., Vázquez-Rodríguez, G.A., Iturbe, U., 2011. Chlorine disinfection of Pseudomonas aeruginosa, total coliforms, Escherichia coli and Enterococcus faecalis: Revisiting reclaimed water regulations. Water Sci.

Technol. 64, 2151–2157.

Crebelli, R., Conti, L., Monarca, S., Feretti, D., Zerbini, I., Zani, C., Veschetti, E., Cutilli, D., Ottaviani, M., 2005. Genotoxicity of the disinfection by-products resulting from peracetic acid- or hypochlorite-disinfected sewage wastewater. Water Res. 39, 1105–1113.

Dabrowska, A., Swietlik, J., Nawrocki, J., 2003. Formation of aldehydes upon ClO2 disinfection. Water Res. 37, 1161–1169.

De Luca, G., Sacchetti, R., Zanetti, F., Leoni, E., 2008. Comparative study on the efficiency of peracetic acid and chlorine dioxide at low doses in the disinfection of urban wastewaters. Ann. Agric. Environ. Med. 15, 217–224.

DHI, 2010. Restkoncentrationsbestemmelse af brintperoxid i forbindelse med hygiejnisering af udløbsvand fra renseanlæg.

Di Furia, F., Prato, M., Quintily, U., Salvagno, S., Scorrano, G., 1984. Gas - liquid chromatographic method for the determination of peracids in the presence of a large excess of hydrogen peroxide. Analyst 109, 985–987.

Emmanuel, E., Keck, G., Blanchard, J.-M., Vermande, P., Perrodin, Y., 2004. Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environ. Int. 30, 891–900.

Frew, J.E., Jones, P., Scholes, G., 1983. Spectrophotometric determination of hydrogen peroxide and organic hydropheroxides at low concentrations in aqueous solution. Anal. Chim. Acta 155, 139–150.

Gardner, C., Bucksath, J., 1996. Static acute toxicity of 5 % peracetic acid (Vigor Ox) to rainbow trout (Oncorhynchus mykiss). Final report 42348, ABC Laboratories, Columbia, MO, USA. Unpublished report, study I95-2023. FMC, Princeton NJ, USA.

Gehr, R., Chen, D., Moreau, M., 2009. Performic acid (PFA): Tests on an advanced primary effluent show promising disinfection performance. Water Sci. Technol. 59, 89–96.

Gehr, R., Wagner, M., Veerasubramanian, P., Payment, P., 2003. Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater. Water Res. 37, 4573–4586.

RELATEREDE DOKUMENTER