General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
You may not further distribute the material or use it for any profit-making activity or commercial gain
You may freely distribute the URL identifying the publication in the public portal
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Downloaded from orbit.dtu.dk on: Mar 24, 2022
Energikonvertering i fremtidens effektive energisystem
Hendriksen, Peter Vang
Publication date:
2012
Link back to DTU Orbit
Citation (APA):
Hendriksen, P. V. (Forfatter). (2012). Energikonvertering i fremtidens effektive energisystem. Lyd og/eller billed produktion (digital)
Energikonvertering i fremtidens effektive energisystem
Peter V. Hendriksen, DTU Energikonvertering
Ændringer i Energisystemet, drivende faktorer
• Hensyn til klima, minimering af emissioner.
• Forsyningssikkerhed
• Økonomi, Pris på konventionelle fossile brændsler
• Erhvervspolitik
• Accept/manglende accept af atomkraft
• Geopolitiske, strategiske hensyn
• Forøget forbrug, befolkningstilvækst
• ..
• Ressourceknaphed
• store fossile ressourcer
• store vind/sol ressourcer
DTU Energy Conversion, Technical University of Denmark 2
• store vind/sol ressourcer
Dansk Målsætning
• 2020: 50 % El forbrug dækket af VE
• 2035: 0 % Fossil energi i el og varme -produktion
• 2050: 100 % VE 2050: 100 % VE
Udfordringer
Ø d l f fl k d d k
1. Øget andel af fluktuerende produktion 2. Biomasse er en begrænset ressource !
3. Flydende brændstoffer (Fly, tung transport) hvorfra ?
3000 3500 4000 4500
3000 3500 4000 4500
”Breaking the Biomass bottleneck of the fossil free society”. H. Wenzel, CONCITO 22/9 2010.
500 1000 1500 2000 2500
500 1000 1500 2000 2500
• 4 times more crops needed to replace fossil fuels At maximum we can double cropland
Only a 30 % increase would be sustainable
DK West January 2008 Demand and Wind power January 2008 + 3,000 MW
0 500
Wind power Demand
0 500
Wind power Demand
Source: Energinet.dk
Only a 30 % increase would be sustainable
• Biomass residues < 20% of energy consumption
“The role of fuel cells and electrolysers in future efficient energy systems”
Peter Vang Hendriksen, DTU Energy Conversion,
Brian Vad Mathiesen, Department of Development and Planning, Aalborg University, Allan S. Pedersen and Søren Linderoth, DTU Energy Conversion
;
Ch13 DTU Energy Report. Enabling technologies
Brændselsceller og Elektrolyse kan bidrage til løsning !
Ch13 DTU Energy Report. Enabling technologies
0.8 V 1.4 V
Chemical energy Electricity + Heat
Brug af brændselsceller i fremtidens energisystem
• Hvorfor ?
• Høj el-virkningsgrad
• God del-last karakteristik (virkningsgrad)
• God del-last karakteristik (virkningsgrad)
• Fleksible
L k l CHP h b d l ll
~6 % i DK på el-siden (Ref 1)å~20% på fjernvarme (Ref 2)
• Lokal CHP vha. brændselsceller
• Minimerer transmissionstab
Større indpasning af varmepumper mulig (=brændselsbesparelse) , Ref 3:
• Systemstudier viser at decentral FC-CHP er mere fordelagtigt
• Transport; FC-vehicles
DTU Energy Conversion, Technical University of Denmark
Ref.3 B. V. Mathiesen, “Fuel cells and electrolysers in future energy systems”, Ph.D. Thesis, Aalborg University, 2008 Ref. 2 http://www.indexmundi.com/facts/denmark/electric-power-transmission-and-distribution-losses
Ref. 1 http://www.skfj.dk/showpage.php?pageid=847
Typer af Brændselsceller/(Elektrolyseceller)
AFC PEMFC SOFC
Electrolyte Potassium h d id
Polymer
b Solid oxide
y hydroxide membrane
Catalyst Nickel Platinum Perovskites/Ni
Operating temp. 40–100°C 60–200°C 600 – 900 °C
Fuel(s) H2 H2 or CH3OH H2, CO, NH3,
Hydrocarbons
I t l t t CO CO CO S NH S
Intolerant to CO, CO2 CO, S, NH3 S
Electric efficiency ~ 45 % 40 – 55 % 50 – 60 %
Mobile units Mobile units CHP from micro- Applications Mobile units,
space, military
Mobile units, micro-CHP
CHP from micro to large-scale
• R&D fokus: PEMFC, HT-PEM og SOFC F d l l f ll
DTU Energy Conversion, Technical University of Denmark 6
• Fordele og ulemper for alle
• Forskning og udvikling på alle spor på DTU (AEC elektrolyse)
SOFC Ni-YSZ supporteret celle
Ni/YSZ support
Ni/YSZ electrode LSM-YSZ electrode
•
Skalerbare fremstillingsmetoderDTU Energy Conversion, Technical University of Denmark
7 5 March 2012
Samarbejde; DTU - Haldor Topsøe indenfor SOFC siden1989
DTU, RISØ HTAS
Datterselskab af Haldor Topsøe A/S Dannet 2004
Dannet 2004
75 100
15000 20000
x12 (%) -line
d -
TOFC
0 25 50
0 5000 10000
2002 2003 2004 2005 2006 2007 2008
Success rate for 12x
m2cells produced
DTU Energy Conversion, Technical University of Denmark 8
2002 2003 2004 2005 2006 2007 2008 Year
# 12x12 cm
Teknologioverførsel fra DTU til TOFC
Stack test status
II 2004
Stack with 2.5G cells
Degradation:
< 8 mV/ 1000 hr
2011
2 5 3 3,5 4 4,5 5
olt
I II III
ife
0.6 0.7 0.8 0.9
tage [V]
0 0,5 1 1,5 2 2,5
0 2000 4000 6000 8000 10000 12000 14000
Vo end of lFuel: H2+ H2O
0 2 0.3 0.4 0.5
Average cell volt
Fuel: Pre-reformed NG, O/C = 2 725 oC
Hours
0 0.1 0.2
0 2000 4000 6000 8000 10000 12000 14000
Time (hr)
0.220 A/cm2 3% H2O in air
Test status:
14.000 hours
20 thermal cycles
( )20 thermal cycles
Degradation steady/leveling off
Source: Niels Christiansen, TOFC, Presented at 10 SOFC Forum 2012, Lucerne
μ-CHP PowerCore
Pre-reformer PowerCorePowerCore
Gen 2 Gen 3
DC power 1.4 kW 1.5kW
DC eff. (LHV) 52%
(80V, 18A)
61%
(59V, 25A) Water
evaporator internal external HEX Burner Stack module
evaporator Start-up
burner internal external
Volumen 148 L 40L
62 63 64
[A]
20 25
30 Weight 90 kg 30 kg
60 61
Voltage [V] or Current
10 15
58 59
19:12:00 00:00:00 04:48:00 09:36:00 14:24:00 19:12:00 00:00:00 04:48:00
StartTime : 05-03-2012 23:59:00 EndTime : 06-03-2012 23:59:00
0 5
PowerCore load cycles
PowerCore®
Source: Niels Christiansen, TOFC, Presented at 10 SOFC Forum 2012, Lucerne
Keramiske brændselsceller på markedet
• Japan: Kyocera, Osaka Gas, Toyota, mfl.
– system til mikrokraftvarme introduceret april 2012 – 700 W el, 42% virkningsgrad
– pris ¥ 2.751.000 (ca. 200.000 kr.);
offentligt tilskud ¥ 1.000.000
• USA: Bloom Energy
– decentral kraftproduktion til fx datacentre
– 100 kW eller 200 kW el, ca. 50% virkningsgrad – alternative forretningsmodeller: købe strømmen,
men ikke anlægget
DTU Energikonvertering, Danmarks Tekniske Universitet 11
Brug af elektrolyse i fremtidens energisystem, SNG
CH
42050; (100 % VE)
Metanisering
CH
4Energi 2050, Vindsporet, Energinet.dk
2050; (100 % VE)
+17GW Vind, +5 GW sol/bølge, BM; 200 PJ/år Lagring;
• Gas: 11TWh, behov; 3.5 TWh å
• EV. : 50 GWh, 1.5 mill EV, få timer
round_trip = electrolyse brændselscelle = 95 * 55 ~ 50 % (Via metan ~ 40-45 %)Brug af elektrolyse i fremtidens energisystem
Syntetiske brændstof til transport y p
Brug af elektrolyse i fremtidens energisystem
Syntetiske brændstof til transport y p
Syntetiske brændstof til transport
Brug af elektrolyse i fremtidens energisystem
y p
Opgradering af biomasse
El+Varme
Økonomisk analyse
SOEC t t 0 3 €/ 2
10
Andre antagelser Elektricitetspris
100$/kW*
SOEC system cost 0.3 €/cm2
Heat 0.23 ¢/kWh
Cell voltage (H2O) 1.3 V (Vtn) C ll lt (CO ) 1 5 V (Vt )
6 8
(¢/kWh)
Cell voltage (CO2) 1.5 V (Vtn) Current density 1.5 A/cm2 Expected life time 10 years
I t t t 5%
4 6
Electricityprice
DK Electricity Price in 2010
Average Price
Interest rate 5%
Expected CO2 cost 23€/ton Expected H2O cost 2.3 €/ton
0 2
0 2000 4000 6000 8000
E
0 2000 4000 6000 8000
Hours
Source; S. H. Jensen, S. Ebbesen, K. V. Hansen, A. H. Pedersen# and M. Mogensen, ”Cost Estimation of H2 and CO Produced by Steam and CO2 Electrolysis”, 2011, (Unpublished).
*J. Thijssen, U.S. DOE/NETL 2007
Økonomisk analyse
2
(€/kg) 0.3 €/cm2
0 15 €/cm2
18
¢/Nm3 ) barrel)86
1
ductioncost( 0.15 €/cm2
9
uctioncost(¢
1%
12%
2%
Heat
I t t
Water
43
crude oil(€/b
0
0 2000 4000 6000 8000
H2prod H2produ
0 85%
12%
Electricity Investment
Equiv.
0
Electrolysis activity (hours) Source; S. H. Jensen, S. Ebbesen, K. V. Hansen, A. H. Pedersen#
and M. Mogensen, ”Cost Estimation of H2 and CO Produced by Steam and CO2 Electrolysis”, 2011, (Unpublished).
• Dagens oliepris ~ 85 $/barrel
• 1.5 A/cm2
• 10 års levetid, kræver fortsat udvikling !
• 0.3 €/cm2
Økonomisk analyse, Metanol fra træ
“G S F l ” Fi l P j t R t EUDP 64010 0011
• “Green SynFuels”, Final Project Report, EUDP 64010-0011.
CO + 2H2 = CH3OH + 91 kJ/mol CO2 + 3H2 = CH3OH+H2O + 41 kJ/mol
CO2 + 3H2 CH3OH+H2O + 41 kJ/mol
DTU Energy Conversion, Technical University of Denmark 18
Direkte fra BM SOEC assisteret (hydrogenering)
Økonomisk analyse, Metanol fra træ
Direkte + SOEC
Træ 207 MW 207 MW
El 141 MW
Synergi
• Justering af C/H-forhold
• Termisk integration Metanol 121 MW 243 MW
Effektivitet 59,2 % 70,8 %
• Termisk integration,
Eksoterm+Endoterm proces
Kap. 6 John Bøgild Hansen, Haldor Topsøe A/S Kap. 6 John Bøgild Hansen, Haldor Topsøe A/S
Økonomisk vurdering
• Break even:
120 US$/barrel
Kap 3 Anders Korsgaard Serenergy A/S
Source: Green SynFuels”, Final Project Report, EUDP 64010-0011
John Bøgild Hansen, Mogens Mogensen, Allan Schrøder Petersen, Aksel Hauge Pedersen, Ivan Loncarevic, Martin Wittrup Hansen, Claus Torbensen, Jacob Bonde, Per Sune Koustrup, Anders Korsgaard, Jesper Lebæk, Svend Lykkemark Christensen,
Project manager: Hans Over Hansen, Danish Technological Institute
Kap. 3. Anders Korsgaard, Serenergy A/S
Biomasse opgradering, Hydrogenering, CCR
• Biomasse er en begrænset ressource (~20% of behov)
• 100 PJ Biomass 20 PJ Solid fuel + 50 PJ Liquid fuel,
• 100 PJ Biomass
100 PJ Solid fuel + 130 PJ Liquid fuel
Fermentering CCR
Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet 20
+ 150 PJ Hydrogen 100 PJ Solid fuel + 130 PJ Liquid fuel CCR
Source; H. Wenzel; “Breaking the biomass
Bottleneck of the fossil free society”, CONCITO, 2010 Olah G.A. “Beyond Oil and Gas: The methanol Economy”, Angw. Chem. Int. Ed. 2005, 44, 2636
SOEC, Teknologistatus
!
World record !
S. H. Jensen et al. , International Journal of Hydrogen Energy, Volume 32, Issue 15, 2007, P. 3253Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet
Status på stak niveau
13.0 0 50 A/cm2 0 75 A/cm2
12.5
ge (V)
-0.50 A/cm2 -0.75 A/cm
11.5 12.0
Stack voltag
11.0
0 200 400 600 800 1000 1200
Electrolysis time (h)
•
Ydelsen er stabil ved moderat strømtæthed (I ~ -0.75 A/cm2 at 850 ºC)•
Standard TOFC stack , H2O og co-electrolyse•
Reversible moduler (?), Produktionskapacitet eksisterer i DK,The Danish National Advanced Technology Foundation’s advanced technology platform
“Development of 2nd generation bioethanol process and technology”,S. Ebbesen et al. Int. J. of Hydrogen Energy 36, 2011
Elektrolyse, AEC, PEMEC, SOEC
Type Largest
system Commercial
suppliers Danish companies Norsk Hydro Green Hydrogen
AEC 3.5 MW
Hydrogenics Iht,….Green Hydrogen
Siemens Corp. Tech. (DK)
LT-PEM 45 kW
H-TEC systemsHydro,… IRD
Hydro,…
SOEC 15 kW
Haldor Topsøe A/STOFC
HT-PEM W HT-PEM W
Første fuld skala Power2Gas anlæg (2MW, Hydrogenics) er under opførsel (E.ON.) i Falgkenhagen, Tyskland (Lagring i naturgasnettet, 2013).
Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet 23
Resultater af systemanalyse, CEESA Hvornår bliver der behov for elektrolyse ?
• 25 % Vindenergi kan indpasses uden forandringer
• 25 % Vindenergi kan indpasses uden forandringer
• > 25 % Varmepumper, varmelagre [1]
• 40 – 45 % El til transport, EV [2]
• >50 – 60 % Syntetisk brændstof (transport) [1]
Referencer
[1] B. V. Mathiesen, “Fuel cells and electrolysers in future energy systems”, Ph.D. Thesis, Aalborg University, 2008.
DTU Energy Conversion, Technical University of Denmark
g y
[2] Henrik Lund, Anders N. Andersen, Poul Alberg Østergaard, Brian Vad Mathiesen, David Connolly, Energy, 42, June 2012, P. 96
Resultater af systemanalyse, CEESA
Kilde: B.V. Mathiesen et al. “CEESA 100% Renewable Energy Scenarios towards 2050”.
Aalborg University, 2011. http://www.ceesa.plan.aau.dk. (to be published 2012).g y, p // p ( p )
• 100 % Fossilfrit 2050 system, eksempel:
• 70 PJ Produceres ved elektrolyse
2 l
DTU Energy Conversion, Technical University of Denmark
• ~240 PJ Biomasse ialt
• “Lager”: 1 uges brint
Resumé, brændselsceller og elektrolyse i energisystemet
1. Øget andel af fluktuerende produktion 2. Biomasse er en begrænset ressource !
3 Flydende brændstoffer (Fly tung transport) hvorfra ?
3. Flydende brændstoffer (Fly, tung transport) hvorfra ?
Brændselsceller:
• Høj virkningsgrad (også del-last) mere effektivt system
El kt l S t ti k b d l (Vi d t t)
Elektrolyse, Syntetiske brændsler (Vind transport)
• Bedre udnyttelse af biomasse syn-fuel syntese, CCR
• Infrastruktur eksisterende
• Nærmere økonomisk anlyse
Elektrolyse, (Power2Gas) Syntese gas, SNG
DTU Energy Conversion, Technical University of Denmark
• Lagring af store mængder energi
• Infrastruktur eksisterende, flytning af store mængder energi
Acknowledgements
S
Sponsors
Danish Energy Authority
• Energinet dk Energinet.dk
• EU
• Topsoe Fuel Cell A/S
• Danish Programme Committee for Energy and Environment
• Danish Programme Committee for Nano Science and Technology, Biotechnology and IT
and Technology, Biotechnology and IT
Colleagues:
M. Mogensen, A. Smith, S. Højgaard Jensen, S. Ebbesen
DTU Energy Conversion, Technical University of Denmark
Thermodynamics
250 300
ol) 1.30
1.55
(Volt)
H2O H2 + ½O2
Total energy demand (Hf)
E
cell= E
tn150 200
mand (KJ/mo
0.78 1.04
rgy demand (
Liquid Gas
Electrical energy demand (Gf)
50 100
Energy dem
0.26 0.52
/(2·n·F) · Ener
L
Heat demand (TSf)
0
0 100 200 300 400 500 600 700 800 900 1000 Temperature (ºC)
0.00
1/
Temperature ( C)