• Ingen resultater fundet

Energikonvertering i fremtidens effektive energisystem

N/A
N/A
Info
Hent
Protected

Academic year: 2022

Del "Energikonvertering i fremtidens effektive energisystem"

Copied!
29
0
0

Indlæser.... (se fuldtekst nu)

Hele teksten

(1)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 24, 2022

Energikonvertering i fremtidens effektive energisystem

Hendriksen, Peter Vang

Publication date:

2012

Link back to DTU Orbit

Citation (APA):

Hendriksen, P. V. (Forfatter). (2012). Energikonvertering i fremtidens effektive energisystem. Lyd og/eller billed produktion (digital)

(2)

Energikonvertering i fremtidens effektive energisystem

Peter V. Hendriksen, DTU Energikonvertering

(3)

Ændringer i Energisystemet, drivende faktorer

• Hensyn til klima, minimering af emissioner.

• Forsyningssikkerhed

• Økonomi, Pris på konventionelle fossile brændsler

• Erhvervspolitik

• Accept/manglende accept af atomkraft

• Geopolitiske, strategiske hensyn

• Forøget forbrug, befolkningstilvækst

• ..

• Ressourceknaphed

store fossile ressourcer

store vind/sol ressourcer

DTU Energy Conversion, Technical University of Denmark 2

store vind/sol ressourcer

(4)

Dansk Målsætning

• 2020: 50 % El forbrug dækket af VE

• 2035: 0 % Fossil energi i el og varme -produktion

• 2050: 100 % VE 2050: 100 % VE

Udfordringer

Ø d l f fl k d d k

1. Øget andel af fluktuerende produktion 2. Biomasse er en begrænset ressource !

3. Flydende brændstoffer (Fly, tung transport) hvorfra ?

3000 3500 4000 4500

3000 3500 4000 4500

”Breaking the Biomass bottleneck of the fossil free society”. H. Wenzel, CONCITO 22/9 2010.

500 1000 1500 2000 2500

500 1000 1500 2000 2500

• 4 times more crops needed to replace fossil fuels At maximum we can double cropland

Only a 30 % increase would be sustainable

DK West January 2008 Demand and Wind power January 2008 + 3,000 MW

0 500

Wind power Demand

0 500

Wind power Demand

Source: Energinet.dk

Only a 30 % increase would be sustainable

• Biomass residues < 20% of energy consumption

(5)

“The role of fuel cells and electrolysers in future efficient energy systems”

Peter Vang Hendriksen, DTU Energy Conversion,

Brian Vad Mathiesen, Department of Development and Planning, Aalborg University, Allan S. Pedersen and Søren Linderoth, DTU Energy Conversion

;

Ch13 DTU Energy Report. Enabling technologies

Brændselsceller og Elektrolyse kan bidrage til løsning !

Ch13 DTU Energy Report. Enabling technologies

0.8 V 1.4 V

Chemical energy Electricity + Heat

(6)

Brug af brændselsceller i fremtidens energisystem

• Hvorfor ?

• Høj el-virkningsgrad

• God del-last karakteristik (virkningsgrad)

• God del-last karakteristik (virkningsgrad)

• Fleksible

L k l CHP h b d l ll

~6 % i DK på el-siden (Ref 1)å

~20% på fjernvarme (Ref 2)

• Lokal CHP vha. brændselsceller

• Minimerer transmissionstab

Større indpasning af varmepumper mulig (=brændselsbesparelse) , Ref 3:

• Systemstudier viser at decentral FC-CHP er mere fordelagtigt

• Transport; FC-vehicles

DTU Energy Conversion, Technical University of Denmark

Ref.3 B. V. Mathiesen, “Fuel cells and electrolysers in future energy systems”, Ph.D. Thesis, Aalborg University, 2008 Ref. 2 http://www.indexmundi.com/facts/denmark/electric-power-transmission-and-distribution-losses

Ref. 1 http://www.skfj.dk/showpage.php?pageid=847

(7)

Typer af Brændselsceller/(Elektrolyseceller)

AFC PEMFC SOFC

Electrolyte Potassium h d id

Polymer

b Solid oxide

y hydroxide membrane

Catalyst Nickel Platinum Perovskites/Ni

Operating temp. 40–100°C 60–200°C 600 – 900 °C

Fuel(s) H2 H2 or CH3OH H2, CO, NH3,

Hydrocarbons

I t l t t CO CO CO S NH S

Intolerant to CO, CO2 CO, S, NH3 S

Electric efficiency ~ 45 % 40 – 55 % 50 – 60 %

Mobile units Mobile units CHP from micro- Applications Mobile units,

space, military

Mobile units, micro-CHP

CHP from micro to large-scale

• R&D fokus: PEMFC, HT-PEM og SOFC F d l l f ll

DTU Energy Conversion, Technical University of Denmark 6

• Fordele og ulemper for alle

• Forskning og udvikling på alle spor på DTU (AEC elektrolyse)

(8)

SOFC Ni-YSZ supporteret celle

Ni/YSZ support

Ni/YSZ electrode LSM-YSZ electrode

Skalerbare fremstillingsmetoder

DTU Energy Conversion, Technical University of Denmark

7 5 March 2012

(9)

Samarbejde; DTU - Haldor Topsøe indenfor SOFC siden1989

DTU, RISØ HTAS

Datterselskab af Haldor Topsøe A/S Dannet 2004

Dannet 2004

75 100

15000 20000

x12 (%) -line

d -

TOFC

0 25 50

0 5000 10000

2002 2003 2004 2005 2006 2007 2008

Success rate for 12x

m2cells produced

DTU Energy Conversion, Technical University of Denmark 8

2002 2003 2004 2005 2006 2007 2008 Year

# 12x12 cm

Teknologioverførsel fra DTU til TOFC

(10)

Stack test status

II 2004

Stack with 2.5G cells

Degradation:

< 8 mV/ 1000 hr

2011

2 5 3 3,5 4 4,5 5

olt

I II III

ife

0.6 0.7 0.8 0.9

tage [V]

0 0,5 1 1,5 2 2,5

0 2000 4000 6000 8000 10000 12000 14000

Vo end of lFuel: H2+ H2O

0 2 0.3 0.4 0.5

Average cell volt

Fuel: Pre-reformed NG, O/C = 2 725 oC

Hours

0 0.1 0.2

0 2000 4000 6000 8000 10000 12000 14000

Time (hr)

0.220 A/cm2 3% H2O in air

Test status:

14.000 hours

20 thermal cycles

( )

20 thermal cycles

Degradation steady/leveling off

Source: Niels Christiansen, TOFC, Presented at 10 SOFC Forum 2012, Lucerne

(11)

μ-CHP PowerCore

Pre-reformer PowerCorePowerCore

Gen 2 Gen 3

DC power 1.4 kW 1.5kW

DC eff. (LHV) 52%

(80V, 18A)

61%

(59V, 25A) Water

evaporator internal external HEX Burner Stack module

evaporator Start-up

burner internal external

Volumen 148 L 40L

62 63 64

[A]

20 25

30 Weight 90 kg 30 kg

60 61

Voltage [V] or Current

10 15

58 59

19:12:00 00:00:00 04:48:00 09:36:00 14:24:00 19:12:00 00:00:00 04:48:00

StartTime : 05-03-2012 23:59:00 EndTime : 06-03-2012 23:59:00

0 5

PowerCore load cycles

PowerCore®

Source: Niels Christiansen, TOFC, Presented at 10 SOFC Forum 2012, Lucerne

(12)

Keramiske brændselsceller på markedet

• Japan: Kyocera, Osaka Gas, Toyota, mfl.

– system til mikrokraftvarme introduceret april 2012 – 700 W el, 42% virkningsgrad

– pris ¥ 2.751.000 (ca. 200.000 kr.);

offentligt tilskud ¥ 1.000.000

• USA: Bloom Energy

– decentral kraftproduktion til fx datacentre

– 100 kW eller 200 kW el, ca. 50% virkningsgrad – alternative forretningsmodeller: købe strømmen,

men ikke anlægget

DTU Energikonvertering, Danmarks Tekniske Universitet 11

(13)

Brug af elektrolyse i fremtidens energisystem, SNG

CH

4

2050; (100 % VE)

Metanisering

CH

4

Energi 2050, Vindsporet, Energinet.dk

2050; (100 % VE)

+17GW Vind, +5 GW sol/bølge, BM; 200 PJ/år Lagring;

Gas: 11TWh, behov; 3.5 TWh å

EV. : 50 GWh, 1.5 mill EV, få timer

round_trip = electrolyse brændselscelle = 95 * 55 ~ 50 % (Via metan ~ 40-45 %)

(14)

Brug af elektrolyse i fremtidens energisystem

Syntetiske brændstof til transport y p

(15)

Brug af elektrolyse i fremtidens energisystem

Syntetiske brændstof til transport y p

(16)

Syntetiske brændstof til transport

Brug af elektrolyse i fremtidens energisystem

y p

Opgradering af biomasse

El+Varme

(17)

Økonomisk analyse

SOEC t t 0 3 €/ 2

10

Andre antagelser Elektricitetspris

100$/kW*

SOEC system cost 0.3 €/cm2

Heat 0.23 ¢/kWh

Cell voltage (H2O) 1.3 V (Vtn) C ll lt (CO ) 1 5 V (Vt )

6 8

/kWh)

Cell voltage (CO2) 1.5 V (Vtn) Current density 1.5 A/cm2 Expected life time 10 years

I t t t 5%

4 6

Electricityprice

DK Electricity Price in 2010

Average Price

Interest rate 5%

Expected CO2 cost 23€/ton Expected H2O cost 2.3 €/ton

0 2

0 2000 4000 6000 8000

E

0 2000 4000 6000 8000

Hours

Source; S. H. Jensen, S. Ebbesen, K. V. Hansen, A. H. Pedersen# and M. Mogensen, ”Cost Estimation of H2 and CO Produced by  Steam and CO2 Electrolysis”,  2011, (Unpublished).

*J. Thijssen, U.S. DOE/NETL 2007

(18)

Økonomisk analyse

2

(€/kg) 0.3 €/cm2

0 15 €/cm2

18

¢/Nm3 ) barrel)86

1

ductioncost( 0.15 €/cm2

9

uctioncost

1%

12%

2%

Heat

I t t

Water

43

crude oil(€/b

0

0 2000 4000 6000 8000

H2prod H2produ

0 85%

12%

Electricity Investment

Equiv.

0

Electrolysis activity (hours) Source; S. H. Jensen, S. Ebbesen, K. V. Hansen, A. H. Pedersen#

and M. Mogensen, ”Cost Estimation of H2 and CO Produced by  Steam and CO2 Electrolysis”,  2011, (Unpublished).

• Dagens oliepris ~ 85 $/barrel

• 1.5 A/cm2

• 10 års levetid, kræver fortsat udvikling !

• 0.3 €/cm2

(19)

Økonomisk analyse, Metanol fra træ

“G S F l ” Fi l P j t R t EUDP 64010 0011

• “Green SynFuels”, Final Project Report, EUDP 64010-0011.

CO + 2H2 = CH3OH + 91 kJ/mol CO2 + 3H2 = CH3OH+H2O + 41 kJ/mol

CO2 + 3H2 CH3OH+H2O + 41 kJ/mol

DTU Energy Conversion, Technical University of Denmark 18

Direkte fra BM SOEC assisteret (hydrogenering)

(20)

Økonomisk analyse, Metanol fra træ

Direkte + SOEC

Træ 207 MW 207 MW

El 141 MW

Synergi

• Justering af C/H-forhold

• Termisk integration Metanol 121 MW 243 MW

Effektivitet 59,2 % 70,8 %

• Termisk integration,

Eksoterm+Endoterm proces

Kap. 6 John Bøgild Hansen, Haldor Topsøe A/S Kap. 6 John Bøgild Hansen, Haldor Topsøe A/S

Økonomisk vurdering

• Break even:

120 US$/barrel

Kap 3 Anders Korsgaard Serenergy A/S

Source: Green SynFuels”, Final Project Report, EUDP 64010-0011

John Bøgild Hansen, Mogens Mogensen, Allan Schrøder Petersen, Aksel Hauge Pedersen, Ivan Loncarevic, Martin Wittrup Hansen, Claus Torbensen, Jacob Bonde, Per Sune Koustrup, Anders Korsgaard, Jesper Lebæk, Svend Lykkemark Christensen,

Project manager: Hans Over Hansen, Danish Technological Institute

Kap. 3. Anders Korsgaard, Serenergy A/S

(21)

Biomasse opgradering, Hydrogenering, CCR

• Biomasse er en begrænset ressource (~20% of behov)

• 100 PJ Biomass 20 PJ Solid fuel + 50 PJ Liquid fuel,

• 100 PJ Biomass

100 PJ Solid fuel + 130 PJ Liquid fuel

Fermentering CCR

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet 20

+ 150 PJ Hydrogen 100 PJ Solid fuel + 130 PJ Liquid fuel CCR

Source; H. Wenzel; “Breaking the biomass

Bottleneck of the fossil free society”, CONCITO, 2010 Olah G.A. “Beyond Oil and Gas: The methanol Economy”, Angw. Chem. Int. Ed. 2005, 44, 2636

(22)

SOEC, Teknologistatus

!

World record !

S. H. Jensen et al. , International Journal of Hydrogen Energy, Volume 32, Issue 15, 2007, P. 3253

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

(23)

Status på stak niveau

13.0 0 50 A/cm2 0 75 A/cm2

12.5

ge (V)

-0.50 A/cm2 -0.75 A/cm

11.5 12.0

Stack voltag

11.0

0 200 400 600 800 1000 1200

Electrolysis time (h)

Ydelsen er stabil ved moderat strømtæthed (I ~ -0.75 A/cm2 at 850 ºC)

Standard TOFC stack , H2O og co-electrolyse

Reversible moduler (?), Produktionskapacitet eksisterer i DK,

The Danish National Advanced Technology Foundation’s advanced technology platform

“Development of 2nd generation bioethanol process and technology”,S. Ebbesen et al. Int. J. of Hydrogen Energy 36, 2011

(24)

Elektrolyse, AEC, PEMEC, SOEC

Type Largest

system Commercial

suppliers Danish companies Norsk Hydro Green Hydrogen

AEC 3.5 MW

Hydrogenics Iht,….

Green Hydrogen

Siemens Corp. Tech. (DK)

LT-PEM 45 kW

H-TEC systems

Hydro,… IRD

Hydro,…

SOEC 15 kW

Haldor Topsøe A/S

TOFC

HT-PEM W HT-PEM W

 Første fuld skala Power2Gas anlæg (2MW, Hydrogenics) er under opførsel (E.ON.) i Falgkenhagen, Tyskland (Lagring i naturgasnettet, 2013).

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet 23

(25)

Resultater af systemanalyse, CEESA Hvornår bliver der behov for elektrolyse ?

• 25 % Vindenergi kan indpasses uden forandringer

• 25 % Vindenergi kan indpasses uden forandringer

• > 25 % Varmepumper, varmelagre [1]

• 40 – 45 % El til transport, EV [2]

• >50 – 60 % Syntetisk brændstof (transport) [1]

Referencer

[1] B. V. Mathiesen, “Fuel cells and electrolysers in future energy systems”, Ph.D. Thesis, Aalborg University, 2008.

DTU Energy Conversion, Technical University of Denmark

g y

[2] Henrik Lund, Anders N. Andersen, Poul Alberg Østergaard, Brian Vad Mathiesen, David Connolly, Energy, 42, June 2012, P. 96

(26)

Resultater af systemanalyse, CEESA

Kilde: B.V. Mathiesen et al. “CEESA 100% Renewable Energy Scenarios towards 2050”.

Aalborg University, 2011. http://www.ceesa.plan.aau.dk. (to be published 2012).g y, p // p ( p )

• 100 % Fossilfrit 2050 system, eksempel:

• 70 PJ Produceres ved elektrolyse

2 l

DTU Energy Conversion, Technical University of Denmark

• ~240 PJ Biomasse ialt

• “Lager”: 1 uges brint

(27)

Resumé, brændselsceller og elektrolyse i energisystemet

1. Øget andel af fluktuerende produktion 2. Biomasse er en begrænset ressource !

3 Flydende brændstoffer (Fly tung transport) hvorfra ?

3. Flydende brændstoffer (Fly, tung transport) hvorfra ?

Brændselsceller:

Høj virkningsgrad (også del-last) mere effektivt system

El kt l S t ti k b d l (Vi d t t) 

Elektrolyse, Syntetiske brændsler (Vind transport)

• Bedre udnyttelse af biomasse syn-fuel syntese, CCR

• Infrastruktur eksisterende

• Nærmere økonomisk anlyse

Elektrolyse, (Power2Gas) Syntese gas, SNG

DTU Energy Conversion, Technical University of Denmark

• Lagring af store mængder energi

• Infrastruktur eksisterende, flytning af store mængder energi

(28)

Acknowledgements

S

Sponsors

Danish Energy Authority

• Energinet dk Energinet.dk

EU

• Topsoe Fuel Cell A/S

• Danish Programme Committee for Energy and Environment

• Danish Programme Committee for Nano Science and Technology, Biotechnology and IT

and Technology, Biotechnology and IT

Colleagues:

M. Mogensen, A. Smith, S. Højgaard Jensen, S. Ebbesen

DTU Energy Conversion, Technical University of Denmark

(29)

Thermodynamics

250 300

ol) 1.30

1.55

(Volt)

H2O H2 + ½O2

Total energy demand (Hf)

E

cell

= E

tn

150 200

mand (KJ/mo

0.78 1.04

rgy demand (

Liquid Gas

Electrical energy demand (Gf)

50 100

Energy dem

0.26 0.52

/(2·n·F) · Ener

L

Heat demand (TSf)

0

0 100 200 300 400 500 600 700 800 900 1000 Temperature (ºC)

0.00

1/

Temperature ( C)

Energy (“volt”) = Energy (kJ/mol)/2F E = H/2F

i  E

cell

- G/2F

Price  1/i [A/cm

2

]

E

tn

= H/2F Price  1/i [A/cm

2

] ,

H/G > 1 ,  at E = E

tn

(no heat loss)

Referencer

RELATEREDE DOKUMENTER

“Given the number of advantages over conven- tional energy conversion devices that include higher efficiency, versatility and fuel flexibility, and considering also the urgency

However, these flow rates are way above the typical liquid mixture flow rates necessary for single cell tests, and hence the use of the evapo- rator system is suitable enough for

In  this  dissertation,  the  energy  system  analysis  and  planning  model  EnergyPLAN  is  used  [18].  The  aim  of  a  planning  model  is  to design 

In other words, the Smart Energy Systems concept couples with the concepts defined in the previous subchapters to make clear that future renewable fuel production must

Electrolysers have a good ability to reduce excess electricity production from intermittent renewable sources or in other words provide flexibility to the system, but the fuel

Introducing flexibility while maintaining fuel efficient renewable energy systems With a starting point in the three reference energy systems, the energy system in IDA 2015, IDA

operation, meaning they can operate both in fuel cell and electrolysis mode, more known as reversible solid oxide fuel cell (RSOFC). This makes them very attractive for systems

The transition from fossil fuel systems to smart renewable energy systems encompasses that a large share of the value added is moved from distant coal mining and power plant