• Ingen resultater fundet

Accordingly, this thesis provides a contribution to the Profiting from Innovation literature

N/A
N/A
Info
Hent
Protected

Academic year: 2022

Del "Accordingly, this thesis provides a contribution to the Profiting from Innovation literature"

Copied!
159
0
0

Indlæser.... (se fuldtekst nu)

Hele teksten

(1)
(2)

Résumé    

Occasionally   small   technology   start-­‐ups   (STSUs)   are   unable   to   advance   their   technology   towards   commercialization   due   to   financial   limitations   and   lack   of   crucial   complementary   assets.   For   this   reason,   STSUs   are   bound   to   profit   through   an   intermediate   market   for   immature  technology.  Here,  STSUs  collaborate  with  incumbents  who  assume  control  over  the   technology,   mature   it   and   eventually   commercialize   it.   Different   collaboration   agreements   exist,   such   as   e.g.   licensing   or   joint   venture.   However,   some   STSUs   are   left   with   only   one   option,  namely  outright  technology  sale.  The  Profiting  from  Innovation  literature  studies  the   dynamics   of   innovation   and   the   implications   for   business   strategy.   However,   the   particularities  of  STSUs  bound  to  profit  from  technology  sale  are  neglected.  Accordingly,  this   thesis   provides   a   contribution   to   the   Profiting   from   Innovation   literature.   First,   it   is   hypothesized   that   Profiting   from   Innovation   has   a   limited   reach   in   terms   of   providing   adequate  strategic  advice  for  STSUs  bound  to  profit  from  technology  sale.  By  applying  the   Profiting   from   Innovation   framework   to   a   case   study   of   a   Danish   STSU   the   hypothesis   is   confirmed,   due   to   the   immature   nature   of   the   technology,   the   immature   state   of   the   industry,  and  the  lack  of  financial  resources.  It  is  argued  that  the  strategic  advice  offered  by   the   Profiting   from   Innovation   framework   is   focused   on   the   last   phases   of   the   innovation   process.  Subsequently,  this  thesis  sets  out  to  expand  the  reach  of  Profiting  from  Innovation   as  well  as  its  practical  application.  The  case  study  is  now  used  in  an  explorative  manner  while   derived   findings   are   enriched   with   selected   theory.   It   is   proposed   that   STSUs   have   weak   bargaining  positions  due  to  the  imperfections  of  markets  for  immature  technology,  caused  by   limited   thickness   of   the   markets,   asymmetric   information,   high   uncertainty   and   high   transaction   costs.   To   improve   this   bargaining   position,   and   enhance   the   probability   of   becoming   profitable,   STSUs   need   to   build   advantageous   appropriability   regimes   and   explorative   complementary   asset   positions.   An   advantageous   appropriability   regime   must   balance   between   the   protection   and   transferability   of   STSUs’   technologies.   In   order   to   optimize  the  explorative  complementary  asset  position  STSUs  need  to  focus  on  building  up   competences   for   combining   the   right   explorative   assets     –   including   scientific   research,   process   innovative,   product   innovative   (technical   or   functional   application),   and   aesthetic   design   –   and   managing   the   alliances   from   which   these   assets   stem.   The   findings   are   arranged  in  a  proposed  ‘Exit  strategy  decision  &  action  flow  chart’  targeted  towards  STSUs   bound  to  profit  from  outright  technology  sale  and  thus  focuses  on  the  earlier  phases  of  the   innovation  process.  

(3)

Acknowledgements    

We  would  like  to  thank  the  following  people  for  their  contribution  to  this  master  thesis:  

 

• Nicholas  Smith  

• Christian  Nielsen  

• Carsten  Bech  

• Anders  Køhler  

• Erik  Skaarup  

• Kenneth  Svenningsen  

• Josephine  Grønnegård    

Additionally,  we  would  like  to  thank  our  supervisor  Jens  Frøslev  Christensen,  Professor  at  the   Institute  for  Innovation  and  Organizational  Economics  at  Copenhagen  Business  School,  for   his  guidance  and  insights  during  the  process  of  writing  this  thesis.  Finally,  we  thank  family   and  friends  for  their  support.  

         

_________________________  

Jean  Michel  Brask  Deleuran    

   

_________________________  

Eske  Bo  Knudsen  

(4)

Table  of  contents    

Chapter  1:  Introduction... 6  

1.1  Terminology ...10  

1.2  Reading  Instruction...11  

Chapter  2:  Case  Description... 14  

2.1  Context:  Sustainable  Offshore  Energy ...14  

2.2  Floating  Power  Plant  A/S ...16  

2.3  The  Poseidon  Concept ...18  

2.4  Challenges  of  Floating  Power  Plant ...24  

Chapter  3:  Methodological  Reflections... 27  

3.1  Social  Science  Methodology ...27  

3.2  Research  Strategy  &  Design...29  

3.3  Reliability  and  Validity  of  our  Research  &  Findings...38  

3.4  Delimitations...40  

Chapter  4:  Theoretical  Point  of  Departure... 42  

4.1  Profiting  from  Innovation...42  

Chapter  5:  Analysis  1  The  Limited  Reach  of  Profiting  from  Innovation... 48  

5.1  Appropriability  Regime  Surrounding  Poseidon...49  

5.2  Floating  Power  Plant’s  Complementary  Asset  Position ...52  

5.3  Floating  Power  Plant’s  Profiting  Chances ...55  

5.4  Strategic  Implications  for  Floating  Power  Plant...55  

5.5  Conclusion  to  Analysis  1...63  

Chapter  6:  Analysis  2  Expanding  the  Domain  of  Profiting  from  Innovation... 65  

6.1  Exit  Strategy  Business  Model...66  

Case  Narrative:  Floating  Power  Plant’s  new  ‘Exit  Strategy  Business  Model’...67  

6.2  Entering  the  Market  for  Technology...70  

Case  Narrative:  Floating  Power  Plant  and  the  Market  for  Technology...70  

6.2.1  The  Rise  of  Markets  for  Technology ... 72  

6.2.2  Particular  Characteristics  of  a  Market  for  Immature  Technology... 74  

6.2.3  Implications  of  a  Market  for  Immature  Technology ... 77  

6.2.4  Sub-­‐Conclusion ... 79  

(5)

6.3  Advantageous  Appropriability  Regime ...79  

Case  Narrative:  Building  an  Advantageous  Appropriability  Regime ...80  

6.3.1  Immaturity  Increases  Tacitness ... 81  

6.3.2  Tacitness  as  a  Disadvantage... 82  

6.3.3  Building  an  Advantageous  Appropriability  Regime... 83  

6.3.4  Available  and  Effective  Appropriability  Mechanisms... 84  

6.3.5  Sub-­‐Conclusion ... 85  

6.4  Advantageous  Complementary  Asset  Position...86  

Case  Narrative:  Optimizing  the  Complementary  Asset  Position...86  

6.4.1  Exploitative  vs.  Explorative  Complementary  Assets ... 88  

6.4.2  Inter-­‐asset  (Innovative)  Competences... 93  

6.4.3  Valuable  Alliances ... 95  

6.4.4  Competitive  Advantage  in  Alliances... 97  

6.4.5  Sub-­‐Conclusion ... 99  

Chapter  7:  Discussion... 101  

7.1  Exit  Strategy  Decision  &  Action  Flow  Chart ...102  

7.2  Did  We  Expand  the  Domain  of  Profiting  from  Innovation?...107  

Chapter  8:  Conclusion  &  Implications... 110  

8.1  Suggestions  for  Further  Research ...113  

References... 115  

Literature ...115  

Primary  Data ...121  

Reports...122  

Internal  Data  from  Floating  Power  Plant ...122  

Web  Sites ...122  

Appendices  -­‐  overview... 124    

 

(6)

Chapter  1:  Introduction    

»Subsequent   to   the   1980s,   the   global   economy   entered   a   new   phase   which   opened   up   significant   new   opportunities   for   and   incentives   to   young,   high-­‐tech   start  up  (or  new  technology-­‐based)  companies.«  (Research  Policy,  2006:1092)    

Major  innovations  that  revolutionize  markets  and  create  new  ones  often  have  their  origin  in   small  technology  start-­‐ups  (hereafter  STSUs)  taking  on  the  role  as  inventors  and  developers   of  novel  technologies.  While  invention  is  a  necessary  first  step  to  innovation,  it  does  not  in   itself   bring   commercial   success.   Some   STSUs   succeed   in   independently   transforming   their   technologies  into  commercial  products,  which  allow  them  to  compete  directly  on  a  product   market.  However,  turning  immature  technologies  into  commercial  products  often  requires   significant   downstream   resources   and   capabilities   that   are   beyond   the   reach   of   STSUs.  

Furthermore,  due  to  their  youth  and  small  size,  many  of  such  firms  have  little  experience  in   the   markets   for   which   their   innovation   is   most   appropriate   (Gans   &   Stern,   2003).   For   this   reason,  STSUs  may  choose  to  cooperate  with  incumbents  who  possess  the  needed  resources   and   capabilities,   such   as   capital,   production   capacity   and   knowhow,   distribution   network,   and  marketing  skills.  Cooperation  may  take  on  many  forms  ranging  from  licensing  through   joint  venture  to  outright  sale  of  the  technology  (Teece,  1998;  Arora  &  Gambardella,  2009;  

Gans   &   Stern,   2003).   In   other   words,   we   are   witnessing   a   partitioning   of   the   innovation   process,  where  firms  –  often  small  in  size  –  conduct  upstream  activities  related  to  invention   and  technology  development,  while  leaving  production,  marketing  and  distribution  to  large   firms  that  specialize  in  these  capital-­‐intensive  downstream  activities  (Arora  &  Gambardella,   1994).   Accordingly,   the   rents   from   the   innovation   are   distributed   among   several   players.  

Many  empirical  studies  have  shown  that  the  resourceful  incumbents  with  access  to  crucial   assets  often  have  an  upper  hand  in  this  regard,  which  impede  on  STSUs’  ability  to  become   profitable  (Teece,  1986).  

 

In  the  wake  of  these  developments,  a  stream  of  literature  addressing  the  new  competitive   dynamics  for  technological  innovation  has  emerged.  One  of  the  pioneers  in  understanding   these   dynamics   and   theorizing   about   who   profits   from   innovation   is   David   Teece.   In   his   seminal   paper   from   1986   ‘Profiting   from   Technological   Innovation’,   the   single   most   cited  

(7)

paper  published  by  Research  Policy1,  Teece  transcended  previous  economic  approaches  and   merged  different  perspectives  on  economic  organization,  business  strategy,  technology  and   innovation.   In   doing   so,   he   posed   the   question   of  who   gets   to   profit   from   innovation   and   under   what   conditions?   The   article   led   to   a   continuing   thread   of   contributions   from   numerous   scholars,   which   has   improved   the   understanding   of   the   links   between   value   capture   from   innovation   and   firm   strategy.   The   outcome   has   been   a   body   of   literature   dedicated   to   the   field   of  Profiting   from   Innovation  (hereafter   PFI2).   Twenty   years   after   its   publication,   Research   Policy   (2006)   dedicated   a   special   issue   honouring   and   discussing   Teece’s  research  question  (1986)  from  a  post  millennium  perspective.  Despite  that  the  PFI   literature   has   been   approached   from   various   angles   and   the   overall   logics   have   been   addressed   (and   nuanced)   in   isolation,   a   key   mantra   remains:   Conditions   regarding   (1)   the   appropriability   regime   surrounding   the   technology   and   (2)   the   distribution   of   complementary   assets   determine   the   distribution   of   profits   between   the   different   players   taking  part  in  the  innovation  process,  i.e.  whether  the  ‘lion’s  share  of  the  profits’  accrue  to   the  innovator,  imitators,  suppliers  or  even  customers.    

 

The  Limited  Reach  of  Profiting  from  Innovation  

There’s   no   doubt   that   the   work   of   Teece   and   followers   is   of   great   relevance   in   today’s   economy.  The  various  logics  of  the  PFI  literature  have  a  broad  applicability  across  different   industries  and  technologies.  However,  contexts  for  innovation  differ  significantly.  After  all,   several   variables   differ   from   one   innovation   context   to   another   such   as   e.g.   technological   characteristics,   industrial   settings,   market   conditions   and   the   players   involved   just   to   mention  a  few.  Furthermore,  the  globalized  economy  has  brought  about  new  conditions  for   innovation   (Research   Policy,   2006).   An   increasing   number   of   STSUs   choose   to   avoid   the   highly   competitive   environment   of   final   product   markets   and   instead   focus   on   selling   immature   technology   to   incumbent   buyers,   who   assume   final   development   efforts   before   eventually   commercializing   (Athreye   &   Cantwell,   2007;   Arora   &   Gambardella,   2001).  

Accordingly,  these  STSUs  must  reap  profits  prior  to  the  technology  becoming  commercially   applicable.  We  suspect  that  the  dynamics  of  this  alternative  innovation  context  differ  from  

1  681  citations  as  of  July  2006  (Research  Policy,  2006).    

2  ‘PFI  literature’  refers  to  the  entire  body  of  literature  stemming  from  Teece’s  (1986)  paper.  ‘PFI’  and  ‘PFI   theory’  refer  only  to  Teece  (1986).  A  more  detailed  explanation  of  the  abbreviation  PFI  will  be  presented  in  the   Chapter  3.  

(8)

the  dynamics  investigated  thoroughly  by  the  PFI  literature  and  thus  offer  different  strategic   opportunities  for  firms  to  earn  a  profit.  Rather  than  profiting  from  innovation  (a  technology   only  becomes  an  innovation  when  commercialized)  it  is  a  matter  of  addressing  the  question:  

How  can  firms  profit  from  technology?  

 

We  suspect  that  PFI  has  a  limited  reach  making  it  unfit  for  answering  such  a  question  and   directing  adequate  focus  to  business  strategy  in  a  MFT  context.3  Accordingly,  we  set  forward   a  hypothesis,  which  we  intend  to  confirm  or  disconfirm  in  this  thesis:    

 

Hypothesis:   The   Profiting   from   Innovation   theory   does   not   offer   adequate   strategic  advice  for  small  technology  start-­‐ups  bound  to  profit  from  technology   sale.  

 

Our  suspicion  regarding  the  limited  reach  of  PFI  has  arisen  through  initial  literature  research   and  further  strengthened  from  concurrent  empirical  observations  of  a  Danish  STSU  Floating   Power   Plant   (hereafter   FPP4).   In   the   spring   of   2008   the   board   of   FPP   raised   a   question   seemingly  similar  to  that  of  PFI:  How  do  we  profit  from  our  technology?    However,  in  some   vital  aspects  the  firm’s  solution  to  the  question  has  been  different  from  the  strategic  advice   proposed   by   PFI.   Advancing   FPP’s   technology   towards   a   commercialization   stage   required   immense  financial  resources  and  production,  distribution,  and  service  capabilities  that  were   out  of  reach  for  FPP.  For  this  reason,  the  firm  decided  that  there  was  no  alternative  option   than  to  conduct  an  outright  sale  of  the  firm’s  technology  to  a  resourceful  incumbent,  who   not  only  would  commercialize,  but  also  carry  out  the  final  development  of  the  technology.  

   

Expanding  the  Domain  of  Profiting  from  Innovation  

Having  identified  what  we  discern  as  a  limited  reach  of  PFI  –  namely  the  lack  of  focus  on  the   strategic  opportunities  of  STSUs  aiming  to  profit  from  technology  sale  –  this  thesis  sets  out   to  make  a  contribution  towards  exploring  and  providing  a  solution  to  this  issue.  We  seek  to   expand   the   domain   of   PFI   to   adopt   the   point   of   view   of   a   STSU   bound   to   profit   from  

3  We  also  believe  that  the  PFI  literature  generally  neglects  to  address  the  question  of  how  to  profit  from   technology.  However,  due  to  the  limits  of  this  thesis,  we  only  address  PFI  as  represented  by  Teece  (1986)  in  our   hypothesis.  See  more  in  our  Methodological  Reflections  (Chapter  3).  

4  See  Chapter  2  for  a  detailed  presentation  of  Floating  Power  Plant.  The  homepage  of  FPP  will  be  referred  to  as   Web1.    

(9)

technology   sale.   Doing   so,   we   not   only   aim   to   nuance   the   theoretical   field,   but   also   its   practical  application.  

 

Initially,  we  will  confirm  or  disconfirm  our  proposition  by  analyzing  the  situation  of  FPP  with   the   available   analytical   tools   of   the   PFI   framework.   This   will   allow   us   to   identify   crucial   variables  that  PFI  does  not  embrace.  Subsequent  to  this,  we  will  turn  to  the  overriding  goal   of  this  thesis,  which  is  to  expand  the  domain  of  PFI  and  make  it  applicable  within  the  context   of  the  depicted  STSUs.  In  doing  so,  we  use  the  case  of  FPP  in  an  explorative  manner  to  guide   our   theoretical   analysis   and   discussion   of   strategic   imperatives.   We   consider   this   thesis   a   contribution   to   the   stream   of   PFI   literature.   Accordingly   we   maintain   the   PFI   literatures’  

mantra   considering   appropriability   regimes   and   complementary   asset   positions   important   variables   influencing   the   distribution   of   profits.   It   is   important   to   stress   that   it   is   not   the   predictive   power   of   FPI   we   seek   to   enhance,   but   rather   the   strategic   dimension   with   an   exclusive  focus  on  STSUs  pursuing  a  technology  sale.    

 

Based  on  the  above  we  may  derive  the  following  research  question:  

 

How  can  the  domain  of  the  Profiting  from  Innovation  theory  be  expanded  to   offer   strategic   advice   for   small   technology   start-­‐ups   bound   to   profit   from   technology  sale?  

 

After  providing  a  confirmation  of  our  hypothesis  regarding  the  limited  reach  of  PFI,  we  will   structure  the  thesis  according  to  the  sub-­‐questions  below:  

 

1. What   characterizes   the   market   for   immature   technology,   and   what   are   the   strategic  implications  for  STSUs?  

 

2. How  can  STSUs  enhance  the  bargaining  position  on  a  market  for  technology  by   (a)  building  an  advantageous  appropriability  regime  and  (b)  optimizing  the  firm’s   complementary  asset  position?  

 

(10)

1.1  Terminology  

Throughout  this  thesis  we  will  make  use  of  terms  for  which  there  are  no  completely  agreed-­‐

upon  definitions  across  literature.  In  order  to  avoid  any  misunderstandings  we  define  their   exact  meaning  in  the  context  of  this  thesis  in  the  following.  

 

Technology  

We   define   technology   as   »...useful   knowledge,   rooted   in   engineering   and   science,   which   usually  also  draws  on  practical  experience  from  production.  Technology  can  take  the  form  of  

“intellectual  property”  (e.g.  patents),  or  intangibles  (e.g.  a  software  program,  a  design),  or  it   can  be  embodied  in  a  product...«  (Arora  &  Gambardella,  2009:2-­‐3).    This  clearly  is  a  broad   definition.   Accordingly,   technologies   come   in   many   shapes.   We   may   define   a   simple   sub-­‐

component   of   a   larger   system   as   a   technology,   while   using   the   same   label   on   complex   systems  that  comprise  numerous  sub-­‐components.    

 

Innovation  

There  are  numerous  definitions  of  the  term  innovation.  We  define  it  as  the  sum  of  invention,   development   and   commercialization.   Hence,   a   technological   invention   only   qualifies   as   an   innovation  when  it  is  commercialized  and  generates  revenue.      

 

Commercialization  

The   final   stage   of   a   product   development   process,   where   a   technology   is   advanced   sufficiently  to  finally  be  produced  in  full-­‐scale,  introduced  on  the  product  market,  and  hence,   generate   revenue.   When   entering   the   commercialization   phase   it   becomes   necessary   to   draw   on   resources   and   capabilities   within   manufacturing,   marketing,   distribution   and   service.   A   technology   need   not   be   commercially   ready   in   order   for   a   firm   to   earn   a   profit   from  it.  Accordingly,  firms  may  sell  their  technology  on  an  intermediate  technology  market.    

 

Small  technology  start-­‐up    

A   small   technology   based   firm   with   a   limited   operating   history,   which   is   focused   on   a   technology   (or   a   handful   of   technologies)   that   the   firm   develops   and   ultimately   seeks   to   profit  from  in  one  way  or  the  other.    

(11)

1.2  Reading  Instruction  

To  provide  an  overview  of  how  this  thesis  will  be  structured,  we  briefly  present  the  content   of  each  chapter.  Subsequently,  we  will  provide  a  graphic  illustration  of  the  thesis  structure.  

 

Chapter  1:  Introduction  

This   chapter   introduces   the   research   focus   of   the   thesis.   We   will   describe   the   broader   context  for  our  thesis  and  briefly  present  the  theory  that  constitutes  our  point  of  departure.  

We   will   make   clear   the   relevance   of   the   thesis.   The   chapter   also   presents   the   hypothesis   regarding  a  limited  reach  of  the  Profiting  from  Innovation  theory,  together  with  the  research   question  and  sub-­‐questions  guiding  our  study.  Furthermore  we  will  provide  an  explanation   of  the  terminology  we  use  in  order  to  clarify  the  meaning  of  important  terms.  

 

Chapter  2:  Case  Description  

Chapter  2  presents  the  Danish  small  technology  start-­‐up  Floating  Power  Plant  and  the  firm’s   technology  Poseidon.  

 

Chapter  3:  Methodological  Reflections  

The   third   chapter   presents   the   methodological   choices   related   to   answering   our   research   question.  The  chapter  covers  our  research  strategy  and  design,  a  discussion  of  reliability  and   validity  of  our  findings  as  well  as  methodological  delimitations.    

 

Chapter  4:  Theoretical  Point  of  Departure  

This  chapter  will  present  Teece’s  Profiting  from  Innovation  theory  from  1986,  which  serves   as  our  theoretical  point  of  departure.  

   

Chapter  5:  Analysis  1  

The  Limited  Reach  of  Profiting  from  Innovation  

Chapter   5   seeks   to   confirm   our   hypothesis   regarding   the   limited   reach   of   FPP.   The   PFI   framework   will   be   applied   to   the   case   of   FPP   in   order   to   predict   the   future   of   FPP   and   determine  what  strategies  are  available  given  the  firm’s  situation.  We  analyze  FPP  around   the  time,  when  the  firm  had  to  determine  how  to  profit  from  their  technology.  Afterwards,   we  will  consider  to  what  extent  PFI  has  the  quality  to  provide  a  subtle  analysis  that  captures  

(12)

the  specific  complexity  of  the  case  in  subject  and  whether  or  not  it  offers  relevant  strategic   advice.    

 

Chapter  6:  Analysis  2  

Expanding  the  Domain  of  Profiting  from  Innovation    

Chapter   6   aims   at   answering   the   sub-­‐questions   of   this   thesis.   It   is   explored   how   FPP   attempts  to  become  profitable  by  pursuing  a  sale  of  its  immature  technology.  In  doing  so,   we   will   enrich   with   selected   theories   and   thereby   expand   the   reach   of   PFI   making   it   applicable  within  the  given  context.    

 

Chapter  7:  Discussion    

Chapter  7  gathers  and  discusses  the  derived  findings  of  Analysis  2  and  thereby  improve  the   practical   applicability   of   these   findings   for   small   technology   start-­‐ups.   An  ‘Exit   strategy   decision  &  action  flow  chart’  is  proposed  and  discussed.  Following  this,  it  is  discussed  how   our   overall   study   has   enabled   us   to   move   beyond   the   extant   PFI   theory   and   provide   a   contribution   to   the   domain.   Finally,   some   more   general   reflections   regarding   the   general   applicability  and  evaluation  of  our  findings  are  discussed.  

 

Chapter  8:  Conclusion  &  Implications  

Based   on   the   overall   findings   from   previous   chapters,   this   final   chapter   answers   our   key   research  question  and  presents  our  overall  contributions  to  theory  and  practice.  Finally,  the   implications  of  our  findings  for  further  research  are  discussed.  

 

Graphic  Reading  Instruction  

Due   to   the   two-­‐headed   aim   of   this   thesis,   implying   that   we   first   seek   to   confirm   or   disconfirm   a   hypothesis   and   subsequently   seek   to   answer   a   research   question,   we   find   it   necessary  to  provide  the  reader  with  a  graphic  reading  instruction  (page  12).  It  is  meant  as  a   supportive   tool   for   the   reader   during   the   process   of   reading   this   thesis.   The   progress   and   flow  of  the  thesis  is  illustrated  as  well  as  the  interrelatedness  between  the  various  chapters   and  important  sections.  Horizontal  doted  lines  denote  interrelatedness.  Vertical  full  arrows   denote  the  progress  in  the  thesis.    

(13)

Theoretical  Point   of  Departure   Methodological  

Reflections   Case  Description  

Research  Question   Hypothesis  

Introduction  

The  Limited  Reach  of  Profiting  from  Innovation  

Sub-­‐question   2ab   Sub-­‐question  1  

Entering  the  Market  for  Technology  

Advantageous  Appropriability  Regime  

Advantageous  Complementary  Asset  Position   Analysis  1  

Analysis  2  

Time  Period  1:  Spring  

2008   Time  Period  2:  Summer  2008  

to  Present  

Conclusion  &  Implications  

Exit  Strategy  Decision  &  Action  Flow  Chart   Discussion  

(14)

Chapter  2:  Case  Description    

In  this  chapter  we  will  provide  a  description  of  our  case  company  Floating  Power  Plant  (FPP).  

Apart   from   providing   firm-­‐specific   details   and   presenting   FPP’s   technology,  Poseidon,   we   also   find   it   relevant   to   provide   information   on   external   conditions   as   it   will   improve   the   understanding  of  FPP  and  the  firm’s  activities.    

 

2.1  Context:  Sustainable  Offshore  Energy    

It   has   become   a   well-­‐established   fact   that   traditional   energy   sources,   like   coal   and   fossil   fuels,   are   harmful   to   the   environment   and   limited   in   stock.   At   the   same   time,   the   world   demand   for   energy   is   constantly   growing,   largely   due   to   the   rapid   industrialization   of   emergent   economies   such   as   China   and   India   (Roberts,   2005).   This   brings   about   an   increasing  need  to  harvest  unlimited  energy  sources  such  as  solar,  wind  and  wave  energy.    

 

Wind  energy  has  become  a  significant  contributor  to  electricity  production  in  many  regions.  

In  Denmark  20  percent  of  the  electricity  production  comes  from  wind  energy,  whereas  the   share   is   only   two   percent   on   a   global   level.   However,   wind   energy   is   expected   to   diffuse   further  (World  Wind  Energy  Association,  2009).  Whereas  technologies  within  onshore  wind   energy  are  relatively  mature,  technologies  for  offshore  operations  are  still  rather  immature   partly   due   to   the  demanding   climatic   environmental   exposure   offshore,   which   challenges   assembly,   installation   and   maintenance   procedures.   However,   the   opportunities   within   offshore  wind  energy  are  considered  bigger  for  several  reasons.  Firstly,  offshore  winds  are   stronger  thus  providing  a  higher  yield.  Secondly,  they  are  less  likely  to  be  object  for  public   protest  due  to  noise  and  visual  pollution,  which  is  becoming  a  growing  problem  in  Europe,   where  many  regions  are  running  out  of  available  onshore  locations  (Business  Insights,  2008).    

 

The  Emergence  of  Wave  Energy  

Whereas   wind   energy   is   gaining   a   foothold   in   the   global   electricity   generation   mix,   wave   energy  is  yet  to  break  through.  Wave  power  is  a  byproduct  of  solar  power.  Solar  heating  on   the   ocean   surface   causes   temperature   gradients.   As   the   wind   skims   across   large   ocean  

(15)

surfaces,  due  to  the  temperature  gradients,  waves  are  created.  What  begins  as  a  ripple  can   evolve  into  a  large  wave  with  the  passage  of  time  (Waveplam,  2009a).  Wave  energy  largely   depends  on  the  wind  speed  and  the  distance  it  covers.  It  has  high  concentrated  energy  of  up   to  100  kW  per  meter  of  wave  front  (ibid.).  By  exploiting  the  vertical  motion  of  waves,  clean   and   renewable   energy   can   be   harvested.   Most   of   the   technologies   around   are   still   at   a   premature   stage   (which   we   shall   return   to).   However,   wave   energy   holds   some   characteristics,  which  make  it  reasonable  to  assume  that  this  energy  source  can  contribute   to   answering   the   world’s   accelerating   energy   needs   (Frost   &   Sullivan,   2010).   Waves   are   much  more  reliable,  constant  and  predictable  than  other  kinds  of  renewable  energy  sources   such  as  e.g.  wind  or  solar  light.  Coupled  with  vast  worldwide  resources  (2,000  to  4,000  TWh   yearly),   ocean   energy   may   be   the   key   to   answer   the   world's   accelerating   energy   needs   (ibid.).    

 

After  more  than  three  decades  of  being  largely  reduced  to  academic  and  partially  industry   supported  research  activity,  the  development  of  ocean  wave  energy  has  started  to  assume   shape   as   an   emerging   industry,   especially   in   Europe.   The   existence   of   national   and   international   interest   groups,   research   programmes   as   well   as   international   agencies   (e.g.  

Association   of   Danish   Wave   Energy,   Waveplam,   and   International   Energy   Agency   –   Ocean   Energy  Systems)  furthermore  indicates  that  the  industry  is  evolving.  The  commercialization   phase   is   commonly   regarded   to   occur   no   later   than   2015   (ES,   cf.   Appendix   1;   Frost   &  

Sullivan,  2010;  Waveplam,  2009a).5  There  are  roughly  fifty  different  wave  energy  companies   globally,  each  devoted  to  their  own  unique  technology  standard/design  (Waveplam,  2009a).  

It  is  highly  unknown  which  technology  (or  technologies)  will  rise  to  become  the  dominant   design(s).  However,  and  unlike  the  wind  turbine  industry,  it  is  expected  that  the  industry  will   end  up  with  more  than  one  dominant  design,  due  to  the  highly  different  conditions  within   wave   energy   sites   around   the   world   (ES;   FPP,   cf.   Appendix   2).   Although   very   difficult   to   categorize,   we   may   distinguish   between   five   categories   of   technological   concepts   within  

5  There  has  been  a  few  commercializing  attempts  among  wave  power  companies,  however  none  has  managed   to  realize  a  commercial  breakthrough.  Examples  include  Scottish  Pelamis,  claiming  to  have  the  world’s  first   commercial  wave  energy  park  (Web2),  however  this  assertion  is  met  with  massive  skepticism  due  to  the  many   technical  failures  and  delays  (ES,  FPP).  

(16)

wave  energy  extraction.6  Due  to  the  business  angle  of  this  thesis,  we  do  not  wish  to  get  into   details,  as  each  technological  concept  would  require  several  pages  to  describe  meaningfully.  

 

Even   if   a   number   of   technologies   perform   as   required,   their   implementation   and   use   as   large-­‐scale   contributors,   faces   numerous   challenges,   which   commonly   are   summarized   as   non-­‐technical  barriers  (Waveplam,  2009b):  

 

Non-­‐technical  Barriers   Description  

Regulatory  Issues     Conflict  over  sea  use,  operation  licensing   Financial  Incentives     Insufficient  feed-­‐in  tariffs  and  capital  grants   Infrastructure  and  Logistics     Grid  limitations,  supply  chain  bottlenecks   Conflicts  of  Use     Professional  fishery,  yachting/leisure  activities   Environmental  Issues     Marine  mammals,  visual  impact  and  accidents  

Public  perception     Worries  on  electricity  bill,  mistrust  in  the  “new”  

Table  2.1:  Non-­‐technical  Barriers  for  wave  energy  (WavePlam,  2009b;  IEA-­‐OES,  2009).  

 

2.2  Floating  Power  Plant  A/S  

FPP  is  a  STSU  located  at  Østerbro,  Copenhagen  with  testing  facilities  in  Nakskov,  Denmark.  

FPP   is   exclusively   devoted   to   the   development   of   a   novel   technology   for   offshore   energy   extraction   named  Poseidon.   The   company   was   founded   as   a   joint-­‐stock   company   in   2004   following   an   invention   phase   dating   back   to   the   early   1980s.   The   FPP   venture   is   solely   financed  through  private  funding.    

 

Apart   from   various   people   employed   on   a   freelance   basis,   ranging   from   a   communication   executive   to   various   blacksmiths   and   professional   divers,   FPP   presently   has   two   full   time   employees,   CEO   Carsten   Bech   and   Project   Manager   Anders   Køhler.   Bech   was   hired   in   the   spring  of  2008.  He  has  an  extensive  professional  and  educational  background.  Before  joining   FPP,  Bech  spent  six  years  as  a  member  of  the  executive  team  in  NNE  Pharmaplan,  initially  as  

6      Tidal  Barrage  Technologies,  Tidal  Current  Technologies,  Ocean  Wave  Technologies,  Ocean  Thermal  Energy   Conversion  (OTEC),  and  Salinity  Gradient  (IEA-­‐OES,  2009).  

(17)

Head  of  Program  Management,  later  he  was  promoted  to  Head  of  Staff.  Bech  is  originally  an   engineering   graduate,   but   has   supplemented   with   several   business   degrees   and   has   furthermore  obtained  a  PMP  (Project  Management  Degree)  certification  from  the  University   of   Washington   and   a   PED   (Program   for   Executive   Development)   certification   from   IMB   in   Switzerland.   Køhler   has   been   a   part   of   the   management   team   of   FPP   since   the   spring   of   2007.   He   holds   a   master   degree   in   environmental   engineering   from   DTU   and   has   worked   with  consultancy  and  project  management.  The  board  of  directors  comprises  five  members.  

Some  of  these  are  working  board  members,  including  Chairman  Erik  Schulz  who  undertakes   various  assignments  for  the  company  in  particular  when  FPP  officially  meets  with  different   stakeholders  (FPP).  

 

Network  

FPP   has   an   extensive   network   of   strategic   alliances   that   to   a   large   extent   is   concentrated   around   the   office   in   Copenhagen,   Denmark.   The   network   comprises   both   partners   and   collaborators  ranging  from  closed  and  formal  to  open  and  informal.  Much  of  the  continuous   development  of  Poseidon  depends  on  this  network,  because  Poseidon  builds  upon  various   bodies  of  expert  knowledge.  As  part  of  the  company  strategy  FPP  makes  use  of  its  network   to  e.g.  verify  technological  performance  results,  as  is  the  case  with  Risø  DTU,  who  is  globally   recognized  as  one  of  the  leading  research  laboratories  in  sustainable  energy  technologies,   and  Danish  Hydraulic  Institute  (hereafter  DHI),  who  are  globally  renowned  and  considered   one   of   the   world’s   leading   research   institutes   within   marine   technologies   and   hydraulics.  

Below   is   a   list   of   FPP’s   network   as   of   September   2010.   The   organizations   are   prioritized,   according  to  their  perceived  importance,  by  CEO  Carsten  Bech  (CB1,  cf.  Appendix  5):7  

 

• Risø  DTU  (Denmark),  collaborator  (1)  

• DHI  Water  &  Environment  (Denmark),  collaborator  (1)  

• Knud  E.  Hansen  A/S  (Denmark),  collaborator  (2)  

• Jotun  (Norway),  partner  (3)  

• Arup  (Denmark),  collaborator  (3)  

• Lolland  Municipality  (Denmark),  partner  (3)  

• Det  Norske  Veritas  (Norway),  collaborator  (4)  

• Gaia  (Denmark),  partner  (4)  

7  1=  most  valuable,  5=  least  valuable.  

(18)

• Dong  Energy  (Denmark),  partner  (5)  

• HYDRAtech  (Denmark),  partner  (5)  

• Techinvest  (Portugal),  partner  (5)  

• Siemens  (Denmark)  (no  value  available8)    

The   difference   between   partner   and   collaborator   lies   within   the   different   incitement   agreements.   E.g.   Risø   DTU   and   DHI,   perceived   as   the   most   important   alliances,   are   collaborators  of  FPP.  They  are  not  economically  motivated,  as  they  must  be  kept  objective,   in  order  for  the  important  third  party  verifications  to  be  valuable  for  FPP.  On  the  other  hand   partners  are  economically  motivated.  E.g.  Dong  Energy  has  received  shares  in  FPP  in  return   for  the  location  at  Onsevig  wind  turbine  park,  cables,  and  know-­‐how.    

 

In   regards   to   participating   in   more   informal   industry   networks   FPP   has   chosen   to   be   very   selective.   The   management   argues   that   there   are   too   many   interest   groups   and   research   programs   with   minimal   effect   on   the   actual   industry   and   technological   development.   FPP   does  not  believe  that  the  return  on  participating  in  the  various  summits  and  conferences  is   worth   the   investment.   For   this   reason,   FPP   is   not   part   of   e.g.   the   Association   for   Danish   Wave   Energy.   Furthermore,   the   company   has   chosen   not   to   cooperate   with   wind   turbine   producers  in  order  not  to  become  locked-­‐in  with  specific  wind  turbine  interfaces  (FPP).  

 

2.3  The  Poseidon  Concept  

The   Poseidon   concept   is   best   labelled   an   ‘offshore   energy   system’,   in   which   both   wave   energy   and   wind   power   extraction   is   combined   in   a   floating   foundation.   Poseidon   is   designed   for   offshore   locations   with   considerable   flux.   If   broken   into   components   the   platform  consists  of  the  following  four  sub-­‐components:  

 

Power  take-­‐off  system    

Ten  floats  facing  the  wave  direction.  When  the  waves  roll  in,  the  floats  are  tilted   up  and  downwards  activating  a  double  function  piston  pump  that  transforms  the   energy  from  the  wave  into  water  pressure,  which  is  sent  through  a  turbine,  thus   generating   electricity.   The   unique   form   of   the   float   ensures   high   absorption   of  

8  However,  Siemens  has  clearly  become  very  important  for  FPP,  as  they  are  represented  on  the  firm’s  selected   list  of  partnerships  in  the  sales  pitch  slideshow  (Appendix  8).  

(19)

the   wave   energy,   thereby   reducing   the   height   of   the   waves   significantly   and   creating  calm  waters  behind  the  plant.    

Wind  turbines  

The   three   wind   turbines   are   not   specifically   designed   for   Poseidon.   On   a   commercial  size  Poseidon  plant,  they  will  be  industry  standard  wind  turbines.    

Anchor  buoy  

The  patented  anchor  buoy  system  ensures  that  the  waves  always  meet  the  front   of   the   plant.   In   principle   it   is   capable   of   turning   360   degrees,   but   in   most   locations  the  waves  will  roll  in  within  a  90°  angle  (FPP).  The  technology  is  known   from   the   oil   industry,   where   ships   make   it   out   for   platforms   that   have   to   be   perfectly  stable  over  oil  wells.    

Floating  foundation  

The   floating   foundation   integrates   all   other   elements   and   creates   significantly   calmer  waters  behind  the  platform  making  the  platform  easily  accessible  e.g.  for   maintenance  purposes.  The  stability  of  the  floating  foundation  is  affected  by  all   other  components  thus  making  the  whole  platform  highly  systemic.  

 

A  commercial  Poseidon  plant  will  measure  from  100  and  up  to  420  meters  wide  (against  the   wave  fronts),  depending  on  wave  and  wind  conditions  at  the  chosen  location.  A  Poseidon   230  meter  wide  scale  plant  weighing  20,000-­‐30,000  tons  is  expected  to  perform  as  follows:  

 

Life  expectancy  of  30  years  (designed  to  survive  the  100  -­‐1000  year  wave9).  

Efficiency  of  transforming  inherent  wave  energy  to  electricity  of  70  percent.  This   is  done  by  extracting  both  the  push  and  lift  energies  of  the  waves.  These  results   have  been  verified  by  DHI.  According  to  experts,  this  efficiency  rate  is  considered   very  high  (Waveplam,  2009a).    

The  total  installed  effect  of  the  plant  is  10  MW.  60  percent  from  the  floats  and  40   percent  from  the  wind  turbines  (three  2  MW  turbines  or  one  5  MW  turbine).  

50   GWh   annual   output   (energy   yield)   depending   on   actual   wind   and   wave   conditions.  

KWh  price  of  1st  generation  estimated  to  Euro  Cent  15,  2nd  generation  estimated   to  Euro  Cent  10.  (AK,  cf.  Appendix  4;  Appendix  8;  Web1)  

 

9  A  100  -­‐year  wave  is  a  statistically  projected  water  wave,  the  height  of  which,  on  average,  is  met  or  exceeded   once  in  a  hundred  years  for  a  given  location.  The  likelihood  of  this  wave  height  being  attained  at  least  once  in   the  hundred-­‐year  period  is  63%.  As  a  projection  of  the  most  extreme  wave,  which  can  be  expected  to  occur  in  a   given  body  of  water,  the  100-­‐year  wave  is  a  factor  commonly  taken  into  consideration  by  designers  of  oil   platforms  and  other  offshore  structures.  Periods  of  time  other  than  a  hundred  years  may  also  be  taken  into   account,  resulting  in,  for  instance,  a  fifty-­‐year  wave.  (Web3)  

(20)

 

Graphic  illustration  of  a  commercial  Poseidon  plant  (Web1).  

 

The  Development  of  the  Poseidon  Technology  

The  conception  of  Poseidon  dates  back  to  the  1980s,  when  inventor  Hans  Marius  Pedersen   began   to   develop   various   wave   energy   concepts.   However,   in   this   period   of   time,   the   process   was   very   fluid   and   unorganized.   In   the   mid-­‐nineties   the   development   of   what   we   today  know  as  the  Poseidon  concept  speeded  up.  In  1997  Hans  Marius  Pedersen  engaged  in   collaboration  with  Aalborg  University  and  the  first  conceptual  design  was  launched  in  1998   with  a  full  4,2  meter  floating  power  plant  in  a  tank.  The  following  year  the  0,7  x  1,4  floats   were  tested  in  a  wave  channel  at  DHI.  During  2001-­‐2002  a  new  prototype  –  8  meter  wide,   with  three  small  installed  wind  turbines  –  was  tested  in  an  offshore  basin  at  DHI.  

 

These  developments  eventually  led  to  the  establishment  of  FPP  as  a  company  in  2004  and  in   2007   an   organization   was   formed   with   a   working   board   of   directors   and   a   management   team.  All  ownership  of  relevant  intellectual  property  was  acquired  from  the  original  founder   and  inventor.  Subsequently,  FPP  began  the  construction  of  the  Poseidon  37,  a  37  meter  wide   test-­‐   and   demonstration   plant.   In   2008,   Poseidon   37   was   installed   at   the   DONG   offshore   wind   turbine   park   at   Onsevig   without   wind   turbines.   In   the   winter   of   2009,   Poseidon   37   completed  its  1st  Test  Phase  after  a  four-­‐month  period  with  promising  energy  yield  verified   by  DHI  and  platform  stability  confirmed  by  Risø  DTU.  In  May  2010  three  standardized  1  kW   wind   turbines,   delivered   by   Gaia   Wind,   were   for   the   first   time   mounted   on   the   platform   (Appendix  11).  During  June  2010  Poseidon  initiated  its  2nd  Test  Phase  at  Onsevig  (expected   to  terminate  in  March  2011)  in  order  to  document  the  overall  functionality  and  performance  

(21)

of  the  platform  and  its  components,  including  the  wind  turbines.  Since  the  formation  of  FPP   in  2004,  the  company  has  spent  roughly  50  million  DKK  on  the  development  of  the  Poseidon   technology  and  constructing  the  Poseidon  37  (AK).    

 

FPP’s  patent  portfolio  has  been  difficult  to  assess  and  present  in  detail.  According  to  Køhler,   FPP  holds  one  major  patent  that  comprises  the  entire  platform.  Besides  that,  there  are  14   minor   patents   covering   various   components   and   interfaces   (AK).   Through   patent   search,   using   the   Derwent   Innovation   Index,   we   have   found   two   patents   concerning   respectively  

‘tidal   power   energy’   (patent   number:   WO8804362-­‐A110)   and   ‘wave   power   energy’   (patent   number:  DK9800965-­‐A11)  with  Hans  Marius  Pedersen  as  the  Inventor  and  Patent  Assignee.  

We   believe   that   the   first   is   the   ‘one   major’   patent   of   Poseidon,   with   12   smaller   patents   belonging  to  it,  and  the  later,  comprising  two  patents,  is  an  add  on  to  the  patent  portfolio,   made   when   the   inventor   discovered   the   potential   for   wave   power   energy   in   the   original   invention.  As  of  September  2010,  FPP  has  two  new  patent  applications  pending  concerning   respectively   (A)   ‘Hydraulic   Energy   Conversion   (pump   and   turbine)’   and   (B)   ‘Direct   Electric   Energy   Conversion’   (Appendix   9).   Furthermore,   eight   additional   cases   are   in   IPR   Pipeline   (ibid.).  FPP  collaborates  with  patent  agency  Chas.Hude  and  has  during  2010  spent  500.000   DKK  on  this  optimized  patenting  activity  (AK).  

 

Poseidon  37  

Poseidon   37   is   a   downscaled   demonstration   version   of   a   commercial   Poseidon   plant.  

Poseidon  37  has  an  appropriate  size  in  accordance  to  the  relatively  calm  conditions  around   Onsevig.  However,  such  a  plant  will  never  turn  economically  viable,  due  to  limited  energy   yield  and  the  lack  of  sufficient  feed-­‐in-­‐tariffs  on  wave  energy  in  Denmark  (FPP;  Waveplam,   2009b).  For  this  reason,  Denmark  is  not  considered  an  appropriate  location  for  commercial  

10  WO8804362-­‐A1  is  the  overall  patent  number,  under  which  12  other  patent  numbers  belong.  International   Application  Date:  16.06.88.  Description:  ‘Floating  tidal  power  plant  for  energy  generation  -­‐  has  turbines   detachably  arranged  on  common  beam,  which  can  be  swung  up  to  surface  within  area  limited  by  ring  pontoon’  

(Derwent  Innovation  Index).  We  believe  that  this  patent  (together  with  sub-­‐patents)  have  something  to  do   with  Poseidon’s  stable  floating  foundation,  power  take-­‐off  system,  and  anchor  buoy’s  ability  to  always  make   the  plant  face  the  front  of  the  waves.  (Appendix  10)  

11  This  patent  is  verified  by  Anders  Køhler  to  be  one  of  the  Poseidon  patents.  Publication  Date:  23.01.00.  

Description  (also  including:  DK174463-­‐B):  ‘Wave  power  plant  has  waves  moving  floating  bodies  and  movement   transmitted  to  pumps,  establishing  fluid  flow  driving  turbines  or  similar  under  pressure’  (Derwent  Innovation   Index).  No  further  details  were  extractable.  The  patent  could  comprise  elements  of  the  concept  of  the   Poseidon  technology.    

(22)

Poseidon   plants.   Accordingly,   the   Poseidon   concept   is   being   developed   to   become   fit   for   operations  in  greater  oceans,  where  flux  and  wave  heights  are  much  greater.  An  example   could  be  in  the  Atlantic  Ocean  off  the  coast  of  Portugal,  where  the  feed-­‐in  tariffs  are  highly   favourable   (ibid).   Moreover,   the   energy   flux   off   the   coast   of   Portugal   is   four   times   higher   than  the  flux  off  the  coast  of  Hanstholm,  Northern  Jutland,  which  is  the  highest  in  Denmark   (Waveplam,   2009a).   Such   locations   will   require   Poseidon   plants   that   are   up   to   six   times   bigger  than  the  present  Poseidon  in  order  to  generate  platform  stability,  which  will  enable   the  mounting  of  wind  turbines.  

 

Technological  Maturity  of  Poseidon  

In  this  thesis  we  will  refer  to  Poseidon  as  one  technology.  However,  we  acknowledge  that   this   is   a   slight   simplification,   because   Poseidon   is   a   platform   integrating   both   novel   and   existing   sub-­‐technologies   in   a   unique   way.   Novel   technologies   include   the   power   take-­‐off   system,   the   buoy   and   the   floating   foundation   itself.   Existing   technologies   include   the   standardized   wind   turbines   and   the   anchor.   We   may   label   Poseidon   as   a   systemic   technology,   consisting   of   several   components   that   are   interdependent.   This   implies   that   making   changes   in   one   component   will   necessitate   changes   in   another   (or   several   other)   component  (Chesbrough  &  Tusunoki,  200112).  Such  characteristics  are  predominant  within   immature   technologies.   As   they   mature,   the   interface   between   components   will   become   standardized.  Accordingly,  when  viewed  as  a  single  technology,  Poseidon  is  rather  complex   because   it   builds   upon   different   regimes   of   highly   specialized   knowledge   in   respect   to   marine   conditions,   wind   conditions,   hydraulics,   mechanical   controlling   and   automation   software  (AK,  FPP).  

 

In   terms   of   maturity,   Poseidon   is   immature   in   the   sense   that   it   must   undergo   further   developments  in  order  to  become  commercially  viable  and  be  introduced  on  a  final  product   market.  In  order  to  nuance  our  notion  of  immature  we  may  refer  to  the  technological  phases   proposed  by  the  International  Energy  Association  –  Ocean  Energy  Systems  (2009):  

 

12  Chesbrough  &  Kusunoki  (2001)  most  often  use  the  term  ‘integral’  rather  than  ‘systemic’  in  order  to  denote   complex  technologies,  in  which  a  change  in  one  component  also  implies  changes  in  the  linkages  between   components.  

(23)

1. Concept  Design:  Systems  that  have  attracted  attention  due  to  their  unique  and   promising  features,  which  may  or  may  not  be  realized  in  the  future.    

2. Part-­‐scale  (Tank):  Devices,  concepts  and  prototypes  that  are  in  the  research  and   development  phase  undergoing  tests  in  the  laboratory  environment.  

3. Part-­‐scale  (Sea):  Technologies  that  are  reported  to  have  undergone  tests  in  the  sea   (Part  of  the  full  system  or  part-­‐scale  model  of  the  prototype).  

4. Full-­‐scale:  Devices  or  concepts  that  have  seen  at  least  one  full-­‐cycle  development   regardless  of  their  scope  of  commercial  production  or  present  status  of  progress.  

5. Pre-­‐commercial:  Systems  that  are  claimed  to  be  in  such  a  level  of  advancement  where   commercial  deployment  is  reasonably  expected  within  few  years.  

6. Commercial:  Technologies  that  have  been  operating  on  commercial  basis  for  a   significant  period  of  time.  

 

As  of  September  2010,  we  perceive  Poseidon  to  be  in  the  full-­‐scale  phase,  however  close  to   the  pre-­‐commercial  phase.  The  plant  has  completed  its  1st  Test  Phase  offshore  (winter  2009)   and   has   initiated   the   2nd   Test   Phase   (summer   2010).   Poseidon   is   capable   of   generating   consistent   power   to   Dong   Energy’s   grid.   However,   it   is   still   not   rentable   under   Danish   conditions   (due   to   low   flux   and   lack   of   sufficient   feed-­‐in-­‐tariffs).   See   Figure   2.2   for   FPP/Poseidon’s   chronological   timeline,   important   events,   technological   development   and   maturation.  

 

 

Figure  2.2:  FPP/Poseidon’s  timeline.  See  also  Appendix  8,  for  FPP’s  own  timeline.  

 

(24)

Targeted  End-­‐Users  of  Poseidon  

FPP  has  defined  two  end-­‐user  groups  for  Poseidon  as  a  commercial  product  ready  for  use:  

Energy   utilities   and   offshore   oil   companies.   Energy   utilities,   such   as   e.g.   Dong   Energy,   Vattenfall,   and   NG&E,   produce   and   distribute   energy   from   different   sources   including   offshore  wind  turbine  parks.  Such  companies  buy  products  that  will  allow  them  to  produce   energy   ranging   from   raw   materials   such   as   biogas   and   coal   to   products   that   transform   energy  into  electricity,  e.g.  wind  turbines  and  potentially  wave  energy  systems.  Not  only  will   a  fully  commercial  Poseidon  plant  enable  an  energy  utility  to  harvest  energy  from  the  ocean,   but  it  will  also  enable  a  floating  foundation  for  wind  turbines,  which  potentially  will  ease  the   resource   demanding   installation   of   offshore   wind   turbines   in   deep-­‐water   environments   significantly.  Poseidon  therefore  has  a  number  of  clear  synergistic  features  from  an  energy   utility’s  perspective.  The  other  end-­‐user  group  is  offshore  oil  companies.  Poseidon  can  make   oil  platforms  self-­‐sufficient  with  electricity  and  avoid  instalments  of  costly  electricity  wires   from   the   mainland.   Also,   the   concept   reduces   the   height   of   the   waves   significantly   and   creates   calm   waters   behind   the   front   of   the   plant   making   the   Poseidon   platform   easy   accessible  and  potentially  suitable  for  e.g.  storage.  

 

2.4  Challenges  of  Floating  Power  Plant  

Compared   to   the   rapid   developments   within   e.g.   software   and   consumer   electronics   the   development   of   Poseidon   has   been   slow.   The   concept   has   been   underway   for   nearly   30   years  without  reaching  the  commercialization  stage.  The  obvious  reason  for  this  is  the  low   degree   of   commercial   viability,   which   makes   it   difficult   to   raise   capital   and   speed   up   development.   FPP   has   continuously   been   constrained   by   the   lack   of   funding.   On   several   occasions  FPP  has  been  forced  to  stall  operations  while  awaiting  new  capital  injections.  The   capital   base   of   the   company   comprises   approximately   60   small   private   investors   (FPP).   A   significant  amount  of  FPP’s  limited  resources  have  been  spent  on  raising  capital.  Hence,  the   freedom  to  operate  has  been  rather  limited  (FPP).  

 

The   low   commercial   viability   can   partially   be   ascribed   to   the   numerous   risks   and   uncertainties   surrounding   the   functionality   of   the   concept.   Although   the   technology   has   advanced  substantially  and  yielded  promising  results  verified  by  external  parties,  it  has  yet  

Referencer

RELATEREDE DOKUMENTER