• Ingen resultater fundet

Elbil - scenarier for dansk vejtransport : Energi, CO2 emission og økonomi?

N/A
N/A
Info
Hent
Protected

Academic year: 2022

Del "Elbil - scenarier for dansk vejtransport : Energi, CO2 emission og økonomi?"

Copied!
24
0
0

Indlæser.... (se fuldtekst nu)

Hele teksten

(1)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 25, 2022

Elbil - scenarier for dansk vejtransport : Energi, CO2 emission og økonomi?

Nielsen, Lars Henrik

Publication date:

2011

Document Version

Også kaldet Forlagets PDF

Link back to DTU Orbit

Citation (APA):

Nielsen, L. H. (Forfatter). (2011). Elbil - scenarier for dansk vejtransport : Energi, CO2 emission og økonomi?.

Lyd og/eller billed produktion (digital)

(2)

El til Vej-transport

Fleksible El-systemer og Vindkraft WORKSHOP

8. marts 2011 kl. 13.30 - 16.30 hos Dansk Energi Elbil - scenarier for dansk vejtransport:

Energi

CO 2 emission økonomi ?

Lars Henrik Nielsen

SYS Risø DTU

(3)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Content

The project in short.

EV- technology & EV- scenarios

Energy substitution

CO 2 emission consequences

Socio-economy / cost of ownership (marginal partial analyses)

Some conclusions

Basis for further analyses on

• overall power system aspects

• power transmission aspects

• power distribution aspects

13-aug-2008 Præsentationens titel

2

(4)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

The Project:

El til Vejtransport, Fleksible El-systemer og Vindkraft.

EFP07-II Journal nr. 33033 – 0218

Hovedsponsor: EFP07-II Deltagere:

Forskningscenter Risø, DTU: SYS, VEA ØRSTED, DTU: CET

RAM-løse edb EnergiNet.dk Dansk Energi Overordnet mål:

Analyse af mulige samspil mellem

el- og kraftvarmesektoren og

transportsektoren,

dersom dele af vej-transporten baseres

’plug in’ hybrid- og/eller elbil-teknologi.

13-aug-2008 Præsentationens titel

3

(5)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Content

1) EV- technology (assumptions)

Energy substitution

CO 2 emission consequences

Socio-economy / cost of ownership (marginal partial analyses)

2) EV- scenarios (based on EPRI scenario) Some conclusions

13-aug-2008 Præsentationens titel

4

(6)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Vehicles: Passenger cars and LDV < 3.5 ton

The expected ‘close to average’ fleet passenger vehicles defined in versions of:

Reference: Internal Combustion Engine Vehicle (ICEV) Alternative: Hybrid Electric Vehicle (HEV)

Plug-In Hybrid Electric Vehicle (PHEV)

Battery Electric Vehicle (BEV) (All-electric)

Vehicle data:

Ref.: COWI (2007), EPRI (2007), IEA (2009), DOE (2010)

13-aug-2008 5

(7)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Links assumed:

(among defined fleet average vehicles)

PHEVs operated in HEV-mode have the same specific energy (gasoline/diesel) consumption as the defined HEV vehicle.

PHEVs operated in BEV-mode (or charge depletion mode) have the same specific energy consumption (electricity) as the defined BEV vehicle.

HEV fuel consumption equal to 65% of the ICEV within a vintage group.

13-aug-2008 6

(8)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Vehicle energy consumption: kWh/km

13-aug-2008 Præsentationens titel

7

ICEV fuel consumption: HEV fuel consumption:

PHEV electricity and fuel consumption: BEV electricity consumption:

(9)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Vehicle energy consumption: km/liter

13-aug-2008 Præsentationens titel

8

0 5 10 15 20 25 30 35

2006-2010 2011-2015 2016-2020 2021-2025 2026-2030

Energy consumption per vehicle km (Gas/diesel). [km/liter]

Registration period

Specific energy consumption for fleet average ICEV,HEV & PHEV Passenger cars and delivery vans <3.5t. Alternative

PHEV in HEV mode (Gas)

HEV

ICEV

(10)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Electric Vehicle:

Battery size and range per charge

13-aug-2008 9

PHEV & BEV: Range [km/charge] PHEV & BEV: Battery size [kWh/pack]

(11)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Plug-in Hybrid Electric Vehicles (PHEV):

% of annual driving on electricity in DK ?

13-aug-2008 Præsentationens titel

10

Source: Estimated (Weibull) distribution based on data from DTU Transport: ‘Transport Vane

Undersøgelse: 2006+2007’.

(12)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Vehicle specific CO 2 emission: g CO 2 /km

CO 2 Case I : Marginal el-production in DK (coal) Source: DEA (2010)

13-aug-2008 Præsentationens titel

11

ICEV CO

2

emission: HEV CO

2

emission:

PHEV CO

2

emission: CO

2

Case I BEV CO

2

emission: CO

2

Case I

(13)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Electric Vehicle: PHEV and BEV Battery cost and lifetime

13-aug-2008 12

Assumptions:

BatCost I : EV battery cost development scenario based on ref.: COWI (2007) & IEA (2009)

BatCost II: EV battery cost development scenario based on ref.: USDOE, The Recovery Act : Transforming America’s Transportation Sector, Batteries and Electric Vehicles, July 14, 2010.

Cost: $/kWh battery Lifetime: Years

(14)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Vehicle cost of ownership: $/year

EV battery cost: USDOE July 2010 Scenario

13-aug-2008 13

ICEV: HEV:

PHEV: BatCost II , US DOE 2010 scenario BEV: BatCost II, US DOE 2010 Scenario

(15)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Relative cost of ownership: ( $/year )/( $/year ) BEV, PHEV, HEV / ICEV

13-aug-2008 14

BatCost I : DK DEA 2010 scenario BatCost II: US DOE 2010 Scenario

(16)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Conclusion: Individual EVs

Energy & CO 2 emission

Energy:

Electricity substitutes gasoline/diesel via the EV.

EV drive trains have potential for being very energy efficient.

• 3000 kWh electricity may sustain about 20.000 km average vehicle driving.

• Via EVs segments of the transport sector can diversify its energy resource base and reduce dependency on oil based fuels.

CO

2

emission:

EV CO

2

emission relates to the power supply system charging the vehicles. The EV footprint of the individual vehicle change in accordance with the power supply.

• According to the Danish ‘reference’ development for the marginal power supply EVs bring almost insignificant CO

2

reduction (due to coal dominated marginal power

production). However, assuming linear descend to zero CO

2

emission in 2050 for the power supply substantial CO

2

reduction is achieved via EVs substituting ICEVs. Ultimately EVs may provide zero CO

2

emission road transport.

• The individual ICEV of today may emit about 2-3 ton CO

2

/year. This equals max achievable EV CO

2

reduction.

13-aug-2008 Præsentationens titel

(17)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Conclusion: Individual EVs

Economy:

• Cost and lifetime of EV batteries much determine the EV economy.

Based on (marginal and partial) socio-economic costs of ownership.

• In ‘reference’ battery cost development PHEVs may get break-even with the ICEV beyond year 2020.

• In ‘alternative’ battery cost development PHEVs may get break-even with the ICEV year 2015.

• CO 2 emission allowance costs of 2-3 ton CO 2 are small put relative to costs of vehicle ownership. May not constitute incentive for vehicle purchase.

13-aug-2008 Præsentationens titel

16

(18)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Danish fleet:

Vehicle/fleet renewal

Segment: Passenger Cars + LDV < 3.5t

13-aug-2008 Præsentationens titel

17

(19)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Danish fleet:

PHEV Scenario:

Market share & fleet development (# PHEVs)

Segment: Passenger Cars + LDV < 3.5t

13-aug-2008 Præsentationens titel

18

PHEV Market share PHEV: Fleet development

(20)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Danish fleet:

PHEV Scenario:

Energy substitution (TWh/year (fuel or el.))

Segment: Passenger Cars + LDV < 3.5t

13-aug-2008 Præsentationens titel

19

(21)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Danish fleet:

PHEV Scenario:

CO 2 emission (1000 ton CO 2 /year)

Segment: Passenger Cars + LDV < 3.5t

13-aug-2008 Præsentationens titel

20

CO

2

Case I : Marginal (coal based) power supply (DK DEA 2010)

(22)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Danish fleet:

PHEV Scenario:

Socio-economic costs of ownership (Mio.$ /year) (marginal & partial analysis)

13-aug-2008 Præsentationens titel

21

BatCost I : Reference BatCost II : US DOE 2010

(23)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Conclusion: PHEV (& BEV) scenario

Energy & CO 2 emission

Energy:

Electricity substitutes gasoline/diesel via the PHEV and BEV scenarios.

Focusing on year 2030:

o PHEV scenario year 2030:

ICEV Fuel (gasoline/diesel) substituted: - About 9.0 TWh fuel /year PHEV fleet electricity consumption: + About 2.5 TWh electricity o BEV scenario year 2030:

Fuel (gasoline/diesel) substituted: About 5.4 TWh fuel /year.

Corresponding BEV fleet electricity consumption: About 1.7 TWh electricity.

The numbers reflect the relative very high energy efficiency of EV drive trains.

• EVs in the transport sector can diversify energy resource base and reduce dependency on oil based fuels.

CO

2

emission:

• The EV scenario CO

2

emission depends on the power supply system charging the EV fleet.

13-aug-2008 Præsentationens titel

(24)

Risø DTU, Danmarks Tekniske Universitet Risø DTU, Danmarks Tekniske Universitet

Conclusion: PHEV (& BEV) scenario

Economy: Based on (marginal and partial) socio-economic analysis.

Economy:

• Cost and lifetime of EV batteries much determine the EV economy and outcome of the PHEV and BEV scenarios.

• In a ‘reference’ battery cost development the PHEV scenario is close to break-even with reference development. Beyond year 2025 annual socio- economic gains emerge.

The BEV scenario, however, show annual deficits throughout the period, though relatively smaller later in the period.

• In an ‘alternative’ battery cost development (US DOE 2010) the PHEV

scenario is attractive from year 2015 and throughout the period. The BEV scenario becomes cost effective from beyond year 2020.

• CO 2 emission allowance costs are small put relative to costs of vehicle ownership and the scenario costs.

13-aug-2008 Præsentationens titel

23

Referencer

RELATEREDE DOKUMENTER

year). In 2050, the family, therefore pays around DKK 7,200 for electricity consumption by the heat pump and around DKK 11,600 for other electricity consumption. The family

Power plants and fuel processing plants convert the primary energy sources into final energy carriers, such as electricity and refined petroleum products, which

To promote the methanol market the Agency should be allowed to authorize workshops to customize regular car for methanol high blends according to ASTM D5797 - 07 Standard

By improving our your driving behavior you will get reduced CO2 emissions and improve fuel efficiency... All

Figure S21: Technology-wise installed electricity storage capacity for power and heat sectors in 5-year intervals in TWh (left) and relative shares (right).. Figure

One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based

Electrolysers have a good ability to reduce excess electricity production from intermittent renewable sources or in other words provide flexibility to the system, but the fuel

Table 15 Final energy demand in the 2015 Reference and 2050 Baseline scenario (TWh/year) shows the sectoral and total final energy demands of the replicated 2015 Reference and