• Ingen resultater fundet

Torsion Geometry, Superconformal Symmetry and T-duality

N/A
N/A
Info
Hent
Protected

Academic year: 2024

Del "Torsion Geometry, Superconformal Symmetry and T-duality"

Copied!
72
0
0

Indlæser.... (se fuldtekst nu)

Hele teksten

(1)

T orsion G eometry , S uperconformal S ymmetry and T- duality

Andrew Swann

University of Southern Denmark swann@imada.sdu.dk

May 2008 / Bilbao

(2)

Torsion Superconformal T-dual Summary

O utline

1 TorsionGeometry

Metric geometry with torsion KT Geometry

HKT Geometry

2 Superconformal Symmetry

Superconformal Quantum Mechanics The SuperalgebrasD(2, 1;α)

Geometric Structure 3 T-duality

T-duality as a Twist Construction HKT Examples

General HKT with Circle Symmetry

(3)

Torsion Superconformal T-dual Summary

O utline

1 TorsionGeometry

Metric geometry with torsion KT Geometry

HKT Geometry

2 Superconformal Symmetry

Superconformal Quantum Mechanics The SuperalgebrasD(2, 1;α)

Geometric Structure

3 T-duality

T-duality as a Twist Construction HKT Examples

General HKT with Circle Symmetry

(4)

Torsion Superconformal T-dual Summary

O utline

1 TorsionGeometry

Metric geometry with torsion KT Geometry

HKT Geometry

2 Superconformal Symmetry

Superconformal Quantum Mechanics The SuperalgebrasD(2, 1;α)

Geometric Structure 3 T-duality

T-duality as a Twist Construction HKT Examples

General HKT with Circle Symmetry

(5)

Torsion Superconformal T-dual Summary Metric KT HKT

O utline

1 TorsionGeometry

Metric geometry with torsion KT Geometry

HKT Geometry

2 Superconformal Symmetry

Superconformal Quantum Mechanics The SuperalgebrasD(2, 1;α)

Geometric Structure

3 T-duality

T-duality as a Twist Construction HKT Examples

General HKT with Circle Symmetry

(6)

Torsion Superconformal T-dual Summary Metric KT HKT

T orsion G eometry

Metric geometry with torsion metricg, connection∇, torsion T(X,Y) =∇XY− ∇YX−[X,Y]

∇g=0

c(X,Y,Z) =g(T(X,Y),Z)a three-form

∇=∇LC+ 12c anyc∈3(M)will do

∇,∇LCsame

geodesics/dynamics strongifdc=0 Studycompactsimply-connected

torsion geometries with

compatible complex structures and

small symmetry group

(7)

Torsion Superconformal T-dual Summary Metric KT HKT

T orsion G eometry

Metric geometry with torsion metricg, connection∇, torsion T(X,Y) =∇XY− ∇YX−[X,Y]

∇g=0

c(X,Y,Z) =g(T(X,Y),Z)a three-form

∇=∇LC+ 12c anyc∈3(M)will do

∇,∇LCsame

geodesics/dynamics strongifdc=0 Studycompactsimply-connected

torsion geometries with

compatible complex structures and

small symmetry group

(8)

Torsion Superconformal T-dual Summary Metric KT HKT

T orsion G eometry

Metric geometry with torsion metricg, connection∇, torsion T(X,Y) =∇XY− ∇YX−[X,Y]

∇g=0

c(X,Y,Z) =g(T(X,Y),Z)a three-form

∇=∇LC+ 12c anyc∈3(M)will do

∇,∇LCsame

geodesics/dynamics strongifdc=0

Studycompactsimply-connected torsion geometries with

compatible complex structures and

small symmetry group

(9)

Torsion Superconformal T-dual Summary Metric KT HKT

T orsion G eometry

Metric geometry with torsion metricg, connection∇, torsion T(X,Y) =∇XY− ∇YX−[X,Y]

∇g=0

c(X,Y,Z) =g(T(X,Y),Z)a three-form

∇=∇LC+ 12c anyc∈3(M)will do

∇,∇LCsame

geodesics/dynamics strongifdc=0 Studycompactsimply-connected

torsion geometries with

compatible complex structures and

small symmetry group

(10)

Torsion Superconformal T-dual Summary Metric KT HKT

O utline

1 TorsionGeometry

Metric geometry with torsion KT Geometry

HKT Geometry

2 Superconformal Symmetry

Superconformal Quantum Mechanics The SuperalgebrasD(2, 1;α)

Geometric Structure

3 T-duality

T-duality as a Twist Construction HKT Examples

General HKT with Circle Symmetry

(11)

Torsion Superconformal T-dual Summary Metric KT HKT

KT G eometry

g,∇=∇LC+12c, c∈ Λ3TM KTgeometry

additionally

I integrable complex structure

g(IX,IY) =g(X,Y)

∇I =0

Two formFI(X,Y) =g(IX,Y)

∇isunique

c=−IdFI theBismut connection

KT geometry=Hermitian geometry+ Bismut connection

c=0 is K¨ahler geometry strong KT is∂∂I =0 Example

M6=S3×S3 =SU(2)×SU(2) Gauduchon (1991)

every compact HermitianM4is conformal to strong KT

(12)

Torsion Superconformal T-dual Summary Metric KT HKT

KT G eometry

g,∇=∇LC+12c, c∈ Λ3TM KTgeometry

additionally

I integrable complex structure

g(IX,IY) =g(X,Y)

∇I =0

Two formFI(X,Y) =g(IX,Y)

∇isunique

c= −IdFI theBismut connection

KT geometry=Hermitian geometry+ Bismut connection

c=0 is K¨ahler geometry strong KT is∂∂I =0 Example

M6=S3×S3 =SU(2)×SU(2) Gauduchon (1991)

every compact HermitianM4is conformal to strong KT

(13)

Torsion Superconformal T-dual Summary Metric KT HKT

KT G eometry

g,∇=∇LC+12c, c∈ Λ3TM KTgeometry

additionally

I integrable complex structure

g(IX,IY) =g(X,Y)

∇I =0

Two formFI(X,Y) =g(IX,Y)

∇isunique

c= −IdFI theBismut connection

KT geometry=Hermitian geometry+ Bismut connection

c=0 is K¨ahler geometry strong KT is∂∂I =0

Example

M6=S3×S3 =SU(2)×SU(2) Gauduchon (1991)

every compact HermitianM4is conformal to strong KT

(14)

Torsion Superconformal T-dual Summary Metric KT HKT

KT G eometry

g,∇=∇LC+12c, c∈ Λ3TM KTgeometry

additionally

I integrable complex structure

g(IX,IY) =g(X,Y)

∇I =0

Two formFI(X,Y) =g(IX,Y)

∇isunique

c= −IdFI theBismut connection

KT geometry=Hermitian geometry+ Bismut connection

c=0 is K¨ahler geometry strong KT is∂∂I =0 Example

M6=S3×S3 =SU(2)×SU(2) Gauduchon (1991)

every compact HermitianM4is conformal to strong KT

(15)

Torsion Superconformal T-dual Summary Metric KT HKT

O utline

1 TorsionGeometry

Metric geometry with torsion KT Geometry

HKT Geometry

2 Superconformal Symmetry

Superconformal Quantum Mechanics The SuperalgebrasD(2, 1;α)

Geometric Structure

3 T-duality

T-duality as a Twist Construction HKT Examples

General HKT with Circle Symmetry

(16)

Torsion Superconformal T-dual Summary Metric KT HKT

HKT G eometry

HKTstructure (g,∇,I,J,K)with

(g,∇,A)KT, A=I,J,K IJ=K=−JI

c=−AdFAis independent ofA

Mart´in Cabrera and Swann(2007)

IdFI =JdFJ=KdFK impliesI,J,Kintegrable, so HKT.

Examples

Dim4 T4, K3,S3×S1(Boyer, 1988)

Dim8 Hilbert schemes,SU(3), nilmanifolds, vector bundles over discrete groups (Verbitsky, 2003; Barberis and Fino, 2008) Compact, simply-connected examples which are neither hyperK¨ahler nor

homogeneous?

(17)

Torsion Superconformal T-dual Summary Metric KT HKT

HKT G eometry

HKTstructure (g,∇,I,J,K)with

(g,∇,A)KT, A=I,J,K IJ=K=−JI

c=−AdFAis independent ofA Mart´in Cabrera and Swann(2007)

IdFI =JdFJ =KdFK impliesI,J,Kintegrable, so HKT.

Examples

Dim4 T4, K3,S3×S1(Boyer, 1988)

Dim8 Hilbert schemes,SU(3), nilmanifolds, vector bundles over discrete groups (Verbitsky, 2003; Barberis and Fino, 2008) Compact, simply-connected examples which are neither hyperK¨ahler nor

homogeneous?

(18)

Torsion Superconformal T-dual Summary Metric KT HKT

HKT G eometry

HKTstructure (g,∇,I,J,K)with

(g,∇,A)KT, A=I,J,K IJ=K=−JI

c=−AdFAis independent ofA Mart´in Cabrera and Swann(2007)

IdFI =JdFJ =KdFK impliesI,J,Kintegrable, so HKT.

Examples

Dim4 T4, K3,S3×S1(Boyer, 1988)

Dim8 Hilbert schemes,SU(3), nilmanifolds, vector bundles over discrete groups (Verbitsky, 2003;

Barberis and Fino, 2008)

Compact, simply-connected examples which are neither hyperK¨ahler nor

homogeneous?

(19)

Torsion Superconformal T-dual Summary Metric KT HKT

HKT G eometry

HKTstructure (g,∇,I,J,K)with

(g,∇,A)KT, A=I,J,K IJ=K=−JI

c=−AdFAis independent ofA Mart´in Cabrera and Swann(2007)

IdFI =JdFJ =KdFK impliesI,J,Kintegrable, so HKT.

Examples

Dim4 T4, K3,S3×S1(Boyer, 1988)

Dim8 Hilbert schemes,SU(3), nilmanifolds, vector bundles over discrete groups (Verbitsky, 2003;

Barberis and Fino, 2008) Compact, simply-connected examples which are neither hyperK¨ahler nor

homogeneous?

(20)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

O utline

1 TorsionGeometry

Metric geometry with torsion KT Geometry

HKT Geometry

2 Superconformal Symmetry

Superconformal Quantum Mechanics The SuperalgebrasD(2, 1;α)

Geometric Structure

3 T-duality

T-duality as a Twist Construction HKT Examples

General HKT with Circle Symmetry

(21)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

S uperconformal Q uantum M echanics

Nparticles in 1 dimension H= 1

2PagabPb+V(x)

Standard quantisation Pa∼ −i

xa, a=1, . . . ,N

Michelson andStrominger (2000); Papadopoulos (2000)

operatorDwith[D,H] =2iH ⇐⇒ vector fieldXwith LXg=2g&LXV=−2V

Kso span{iH,iD,iK} ∼=sl(2,R) ⇐⇒ X[=g(X,·)is closed

thenK= 12g(X,X).

Choose a superalgebra containingsl(2,R)in its even part.

(22)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

S uperconformal Q uantum M echanics

Nparticles in 1 dimension H= 1

2PagabPb+V(x)

Standard quantisation Pa∼ −i

xa, a=1, . . . ,N Michelson and Strominger (2000); Papadopoulos (2000)

operatorDwith [D,H] =2iH ⇐⇒ vector fieldXwith LXg=2g&LXV=−2V

Kso span{iH,iD,iK} ∼=sl(2,R) ⇐⇒ X[=g(X,·)is closed

thenK= 12g(X,X).

Choose a superalgebra containingsl(2,R)in its even part.

(23)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

O utline

1 TorsionGeometry

Metric geometry with torsion KT Geometry

HKT Geometry

2 Superconformal Symmetry

Superconformal Quantum Mechanics The SuperalgebrasD(2, 1;α)

Geometric Structure

3 T-duality

T-duality as a Twist Construction HKT Examples

General HKT with Circle Symmetry

(24)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

T he S uperalgebras D ( 2, 1; α )

The classification of simple Lie superalgebras containsone continuous family

D(2, 1;α)

g=g0+g1 g0=

sl(2,C) +sl(2,C)++sl(2,C) g1=C2C2+C2=C4Q+C4S [Sa,Qa] =D,

[S1,Q2] =−14α+

αR3+1+4

αR3 Simple forα6= −1, 0,∞.

OverC, isomorphisms between the cases α±1,−(1+α)±1,

−(α/(1+α))±1. Real form g0 =sl(2,R) + su(2)++su(2). OverR,

isomorphisms for α±1

(25)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

T he S uperalgebras D ( 2, 1; α )

The classification of simple Lie superalgebras containsone continuous family

D(2, 1;α) g=g0+g1

g0=

sl(2,C) +sl(2,C)++sl(2,C) g1=C2C2+C2=C4Q+C4S [Sa,Qa] =D,

[S1,Q2] =−14α+

αR3+1+4

αR3 Simple forα6= −1, 0,∞.

OverC, isomorphisms between the cases α±1,−(1+α)±1,

−(α/(1+α))±1. Real form g0 =sl(2,R) + su(2)++su(2). OverR,

isomorphisms for α±1

(26)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

T he S uperalgebras D ( 2, 1; α )

The classification of simple Lie superalgebras containsone continuous family

D(2, 1;α) g=g0+g1 g0 =

sl(2,C) +sl(2,C)++sl(2,C) g1 =C2C2+C2=C4Q+C4S

[Sa,Qa] =D, [S1,Q2] =−14α+

αR3+1+4

αR3 Simple forα6= −1, 0,∞.

OverC, isomorphisms between the cases α±1,−(1+α)±1,

−(α/(1+α))±1. Real form g0 =sl(2,R) + su(2)++su(2). OverR,

isomorphisms for α±1

(27)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

T he S uperalgebras D ( 2, 1; α )

The classification of simple Lie superalgebras containsone continuous family

D(2, 1;α) g=g0+g1 g0 =

sl(2,C) +sl(2,C)++sl(2,C) g1 =C2C2+C2=C4Q+C4S [Sa,Qa] =D,

[S1,Q2] =−14α+

αR3+1+4

αR3

Simple forα6= −1, 0,∞.

OverC, isomorphisms between the cases α±1,−(1+α)±1,

−(α/(1+α))±1. Real form g0 =sl(2,R) + su(2)++su(2). OverR,

isomorphisms for α±1

(28)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

T he S uperalgebras D ( 2, 1; α )

The classification of simple Lie superalgebras containsone continuous family

D(2, 1;α) g=g0+g1 g0 =

sl(2,C) +sl(2,C)++sl(2,C) g1 =C2C2+C2=C4Q+C4S [Sa,Qa] =D,

[S1,Q2] =−14α+

αR3+1+4

αR3 Simple forα6= −1, 0,∞.

OverC, isomorphisms between the cases α±1,−(1+α)±1,

−(α/(1+α))±1. Real form g0 =sl(2,R) + su(2)++su(2). OverR,

isomorphisms for α±1

(29)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

T he S uperalgebras D ( 2, 1; α )

The classification of simple Lie superalgebras containsone continuous family

D(2, 1;α) g=g0+g1 g0 =

sl(2,C) +sl(2,C)++sl(2,C) g1 =C2C2+C2=C4Q+C4S [Sa,Qa] =D,

[S1,Q2] =−14α+

αR3+1+4

αR3 Simple forα6= −1, 0,∞.

OverC, isomorphisms between the cases α±1,−(1+α)±1,

−(α/(1+α))±1.

Real form g0 =sl(2,R) + su(2)++su(2). OverR,

isomorphisms for α±1

(30)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

T he S uperalgebras D ( 2, 1; α )

The classification of simple Lie superalgebras containsone continuous family

D(2, 1;α) g=g0+g1 g0 =

sl(2,C) +sl(2,C)++sl(2,C) g1 =C2C2+C2=C4Q+C4S [Sa,Qa] =D,

[S1,Q2] =−14α+

αR3+1+4

αR3 Simple forα6= −1, 0,∞.

OverC, isomorphisms between the cases α±1,−(1+α)±1,

−(α/(1+α))±1. Real form g0 =sl(2,R) + su(2)++su(2). OverR,

isomorphisms for α±1

(31)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

O utline

1 TorsionGeometry

Metric geometry with torsion KT Geometry

HKT Geometry

2 Superconformal Symmetry

Superconformal Quantum Mechanics The SuperalgebrasD(2, 1;α)

Geometric Structure 3 T-duality

T-duality as a Twist Construction HKT Examples

General HKT with Circle Symmetry

(32)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

S uperconformal G eometry

N =4B quantum mechanics

withD(2, 1;α) superconformal symmetry

HKTmanifoldM

withXaspecial homothety of type(a,b) LXg=ag,

LIXJ=bK,

LXI=0,LIXI=0,. . .

α= ab−1 Action of R×SU(2) rotatingI,J,K

For a6=0

Mis non-compact µ= 2

a(ab)kXk2is anHKT potential FI= 12(ddI+dJdK)µ= 12(1−J)dIdµ.

(33)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

S uperconformal G eometry

N =4B quantum mechanics

withD(2, 1;α) superconformal symmetry

HKTmanifoldM

withXaspecial homothety of type(a,b) LXg=ag,

LIXJ=bK,

LXI=0,LIXI=0,. . . α= ab−1

Action of R×SU(2) rotatingI,J,K

For a6=0

Mis non-compact µ= 2

a(ab)kXk2is anHKT potential FI= 12(ddI+dJdK)µ= 12(1−J)dIdµ.

(34)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

S uperconformal G eometry

N =4B quantum mechanics

withD(2, 1;α) superconformal symmetry

HKTmanifoldM

withXaspecial homothety of type(a,b) LXg=ag,

LIXJ=bK,

LXI=0,LIXI=0,. . . α= ab−1

Action of R×SU(2) rotatingI,J,K

For a6=0

Mis non-compact µ= 2

a(ab)kXk2is anHKT potential FI = 12(ddI+dJdK)µ= 12(1−J)dIdµ.

(35)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

S uperconformal G eometry II

Example

M=Hn+1\ {0} →HP(n) a=2,b=−2,α= −2.

Poon andSwann(2003) a6=0 corresponds to Q=M/(R×SU(2)) =

µ1(1)/SU(2)a QKT orbifold (of special type).

E.g. Q=kCP(2).

ForS3-Sasaki,M=S×R warped product, is

hyperK¨ahler with special homothetyα=−2

Get toa=0, special isometry, by potential change

g1= 1 µg− 1

2µ2(dHµ)2 Discrete quotient

M= (µ1(1)×R)/Z(ϕ, 2) withg1 is HKT with special isometryX

In this case dX[ =0 b1(M)>1

(36)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

S uperconformal G eometry II

Example

M=Hn+1\ {0} →HP(n) a=2,b=−2,α= −2.

Poon andSwann(2003) a6=0 corresponds to Q=M/(R×SU(2)) =

µ1(1)/SU(2)a QKT orbifold (of special type).

E.g. Q=kCP(2).

ForS3-Sasaki,M=S×R warped product, is

hyperK¨ahler with special homothetyα=−2

Get toa=0, special isometry, by potential change

g1= 1 µg− 1

2µ2(dHµ)2 Discrete quotient

M= (µ1(1)×R)/Z(ϕ, 2) withg1 is HKT with special isometryX

In this case dX[ =0 b1(M)>1

(37)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

S uperconformal G eometry II

Example

M=Hn+1\ {0} →HP(n) a=2,b=−2,α= −2.

Poon andSwann(2003) a6=0 corresponds to Q=M/(R×SU(2)) =

µ1(1)/SU(2)a QKT orbifold (of special type).

E.g. Q=kCP(2).

ForS3-Sasaki,M=S×R warped product, is

hyperK¨ahler with special homothetyα=−2

Get toa=0, special isometry, by potential change

g1= 1 µg− 1

2µ2(dHµ)2 Discrete quotient

M= (µ1(1)×R)/Z(ϕ, 2) withg1 is HKT with special isometryX

In this case dX[ =0 b1(M)>1

(38)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

S uperconformal G eometry II

Example

M=Hn+1\ {0} →HP(n) a=2,b=−2,α= −2.

Poon andSwann(2003) a6=0 corresponds to Q=M/(R×SU(2)) =

µ1(1)/SU(2)a QKT orbifold (of special type).

E.g. Q=kCP(2).

ForS3-Sasaki,M=S×R warped product, is

hyperK¨ahler with special homothetyα=−2

Get toa=0, special isometry, by potential change

g1= 1 µg− 1

2µ2(dHµ)2 Discrete quotient

M= (µ1(1)×R)/Z(ϕ, 2) withg1 is HKT with special isometryX

In this case dX[ =0 b1(M)>1

(39)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

S uperconformal G eometry II

Example

M=Hn+1\ {0} →HP(n) a=2,b=−2,α= −2.

Poon andSwann(2003) a6=0 corresponds to Q=M/(R×SU(2)) =

µ1(1)/SU(2)a QKT orbifold (of special type).

E.g. Q=kCP(2).

ForS3-Sasaki,M=S×R warped product, is

hyperK¨ahler with special homothetyα=−2

Get toa=0, special isometry, by potential change

g1= 1 µg− 1

2µ2(dHµ)2

Discrete quotient

M= (µ1(1)×R)/Z(ϕ, 2) withg1 is HKT with special isometryX

In this case dX[ =0 b1(M)>1

(40)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

S uperconformal G eometry II

Example

M=Hn+1\ {0} →HP(n) a=2,b=−2,α= −2.

Poon andSwann(2003) a6=0 corresponds to Q=M/(R×SU(2)) =

µ1(1)/SU(2)a QKT orbifold (of special type).

E.g. Q=kCP(2).

ForS3-Sasaki,M=S×R warped product, is

hyperK¨ahler with special homothetyα=−2

Get toa=0, special isometry, by potential change

g1= 1 µg− 1

2µ2(dHµ)2 Discrete quotient

M= (µ1(1)×R)/Z(ϕ, 2) withg1 is HKT with special isometryX

In this case dX[ =0 b1(M)>1

(41)

Torsion Superconformal T-dual Summary QM D(2, 1;α) Geometry

S uperconformal G eometry II

Example

M=Hn+1\ {0} →HP(n) a=2,b=−2,α= −2.

Poon andSwann(2003) a6=0 corresponds to Q=M/(R×SU(2)) =

µ1(1)/SU(2)a QKT orbifold (of special type).

E.g. Q=kCP(2).

ForS3-Sasaki,M=S×R warped product, is

hyperK¨ahler with special homothetyα=−2

Get toa=0, special isometry, by potential change

g1= 1 µg− 1

2µ2(dHµ)2 Discrete quotient

M= (µ1(1)×R)/Z(ϕ, 2) withg1 is HKT with special isometryX

In this case dX[ =0 b1(M)>1

(42)

Torsion Superconformal T-dual Summary Twist HKT Circle

O utline

1 TorsionGeometry

Metric geometry with torsion KT Geometry

HKT Geometry

2 Superconformal Symmetry

Superconformal Quantum Mechanics The SuperalgebrasD(2, 1;α)

Geometric Structure

3 T-duality

T-duality as a Twist Construction HKT Examples

General HKT with Circle Symmetry

(43)

Torsion Superconformal T-dual Summary Twist HKT Circle

T- duality as a T wist

Xgenerating a circle action onM

(P,θ,Y)−→π Man invariant principal S1-bundle

X0 =X˜ +aYa lift ofX generating a free circle action,da= −XyFθ

Definition

Atwist Wof Mwith respect to Xis

W :=P/hX0i Transverse locally free lifts always exist forXyFθ exact.

M W

P

π Y

πW X0

Dually

Mis a twist ofW with respect toXW = (πW)Y,θW = 1aθ Definition

Tensorsαon αW onMandW areH-related,αWHαif their pull-backs agree onH=kerθ dαWHdα−Fθ1aXyα if invariant

(44)

Torsion Superconformal T-dual Summary Twist HKT Circle

T- duality as a T wist

Xgenerating a circle action onM

(P,θ,Y)−→π Man invariant principal S1-bundle

X0 =X˜ +aYa lift ofX generating a free circle action,da= −XyFθ

Definition

Atwist Wof Mwith respect to Xis

W :=P/hX0i Transverse locally free lifts always exist forXyFθ exact.

M W

P

π Y

πW X0

Dually

Mis a twist ofW with respect toXW = (πW)Y,θW = 1aθ Definition

Tensorsαon αW onMandW areH-related,αWHαif their pull-backs agree onH=kerθ dαWHdα−Fθ1aXyα if invariant

(45)

Torsion Superconformal T-dual Summary Twist HKT Circle

T- duality as a T wist

Xgenerating a circle action onM

(P,θ,Y)−→π Man invariant principal S1-bundle

X0 =X˜ +aYa lift ofX generating a free circle action,da= −XyFθ

Definition

Atwist WofM with respect to Xis

W :=P/hX0i Transverse locally free lifts always exist forXyFθ exact.

M W

P

π Y

πW X0

Dually

Mis a twist ofW with respect toXW = (πW)Y,θW = 1aθ Definition

Tensorsαon αW onMandW areH-related,αWHαif their pull-backs agree onH=kerθ dαWHdα−Fθ1aXyα if invariant

(46)

Torsion Superconformal T-dual Summary Twist HKT Circle

T- duality as a T wist

Xgenerating a circle action onM

(P,θ,Y)−→π Man invariant principal S1-bundle

X0 =X˜ +aYa lift ofX generating a free circle action,da= −XyFθ

Definition

Atwist WofM with respect to Xis

W :=P/hX0i Transverse locally free lifts always exist forXyFθ exact.

M W

P

π Y

πW X0

Dually

M is a twist ofW with respect toXW = (πW)Y,θW = 1aθ

Definition

Tensorsαon αW onMandW areH-related,αWHαif their pull-backs agree onH=kerθ dαWHdα−Fθ1aXyα if invariant

(47)

Torsion Superconformal T-dual Summary Twist HKT Circle

T- duality as a T wist

Xgenerating a circle action onM

(P,θ,Y)−→π Man invariant principal S1-bundle

X0 =X˜ +aYa lift ofX generating a free circle action,da= −XyFθ

Definition

Atwist WofM with respect to Xis

W :=P/hX0i Transverse locally free lifts always exist forXyFθ exact.

M W

P

π Y

πW X0

Dually

M is a twist ofW with respect toXW = (πW)Y,θW = 1aθ Definition

Tensors αon αW onMandW are H-related,αWHαif their pull-backs agree onH=kerθ dαWHdα−Fθ1aXyα if invariant

(48)

Torsion Superconformal T-dual Summary Twist HKT Circle

O utline

1 TorsionGeometry

Metric geometry with torsion KT Geometry

HKT Geometry

2 Superconformal Symmetry

Superconformal Quantum Mechanics The SuperalgebrasD(2, 1;α)

Geometric Structure

3 T-duality

T-duality as a Twist Construction HKT Examples

General HKT with Circle Symmetry

(49)

Torsion Superconformal T-dual Summary Twist HKT Circle

T wisting HKT

Twist by

gWHg, FWIHFI, etc.

Then

IdFWIHIdFI+ 1aX[∧IFθ For HKT need

c= −IdFI =−JdFJ =−KdFK Proposition

HKT twists to HKT via a circle if and only if Fθ ∈S2E= TIΛ1,1I , i.e., an instanton

Xa special isometry,XyFθ =0 twists toXW a special isometry Theorem

M HKT with special isometry (α=−1). Can

untwist locally to dX[=0 on S×S1

change potential on S×Rto a6=0, (α=−2)

Fθ =dX[ isan instanton Many simply-connected examples whenb2(S)>1 E.g., Q=kCP(2)

(50)

Torsion Superconformal T-dual Summary Twist HKT Circle

T wisting HKT

Twist by

gWHg, FWIHFI, etc.

Then

IdFWIHIdFI+ 1aX[∧IFθ For HKT need

c= −IdFI =−JdFJ =−KdFK

Proposition

HKT twists to HKT via a circle if and only if Fθ ∈S2E= TIΛ1,1I , i.e., an instanton

Xa special isometry,XyFθ =0 twists toXW a special isometry Theorem

M HKT with special isometry (α=−1). Can

untwist locally to dX[=0 on S×S1

change potential on S×Rto a6=0, (α=−2)

Fθ =dX[ isan instanton Many simply-connected examples whenb2(S)>1 E.g., Q=kCP(2)

(51)

Torsion Superconformal T-dual Summary Twist HKT Circle

T wisting HKT

Twist by

gWHg, FWIHFI, etc.

Then

IdFWIHIdFI+ 1aX[∧IFθ For HKT need

c= −IdFI =−JdFJ =−KdFK Proposition

HKT twists to HKT via a circle if and only if Fθ ∈S2E= TIΛ1,1I , i.e., an instanton

Xa special isometry,XyFθ =0 twists toXW a special isometry Theorem

M HKT with special isometry (α=−1). Can

untwist locally to dX[=0 on S×S1

change potential on S×Rto a6=0, (α=−2)

Fθ =dX[ isan instanton Many simply-connected examples whenb2(S)>1 E.g., Q=kCP(2)

(52)

Torsion Superconformal T-dual Summary Twist HKT Circle

T wisting HKT

Twist by

gWHg, FWIHFI, etc.

Then

IdFWIHIdFI+ 1aX[∧IFθ For HKT need

c= −IdFI =−JdFJ =−KdFK Proposition

HKT twists to HKT via a circle if and only if Fθ ∈S2E= TIΛ1,1I , i.e., an instanton

Xa special isometry,XyFθ =0 twists toXW a special isometry

Theorem

M HKT with special isometry (α=−1). Can

untwist locally to dX[=0 on S×S1

change potential on S×Rto a6=0, (α=−2)

Fθ =dX[ isan instanton Many simply-connected examples whenb2(S)>1 E.g., Q=kCP(2)

(53)

Torsion Superconformal T-dual Summary Twist HKT Circle

T wisting HKT

Twist by

gWHg, FWIHFI, etc.

Then

IdFWIHIdFI+ 1aX[∧IFθ For HKT need

c= −IdFI =−JdFJ =−KdFK Proposition

HKT twists to HKT via a circle if and only if Fθ ∈S2E= TIΛ1,1I , i.e., an instanton

Xa special isometry,XyFθ =0 twists toXW a special isometry Theorem

M HKT with special isometry (α=−1). Can

untwist locally to dX[=0 on S×S1

change potential on S×Rto a6=0, (α=−2)

Fθ =dX[ isan instanton Many simply-connected examples whenb2(S)>1 E.g., Q=kCP(2)

(54)

Torsion Superconformal T-dual Summary Twist HKT Circle

T wisting HKT

Twist by

gWHg, FWIHFI, etc.

Then

IdFWIHIdFI+ 1aX[∧IFθ For HKT need

c= −IdFI =−JdFJ =−KdFK Proposition

HKT twists to HKT via a circle if and only if Fθ ∈S2E= TIΛ1,1I , i.e., an instanton

Xa special isometry,XyFθ =0 twists toXW a special isometry Theorem

M HKT with special isometry (α=−1). Can

untwist locally to dX[=0 on S×S1

change potential on S×Rto a6=0, (α=−2)

Fθ =dX[ isan instanton

Many simply-connected examples whenb2(S)>1 E.g., Q=kCP(2)

(55)

Torsion Superconformal T-dual Summary Twist HKT Circle

T wisting HKT

Twist by

gWHg, FWIHFI, etc.

Then

IdFWIHIdFI+ 1aX[∧IFθ For HKT need

c= −IdFI =−JdFJ =−KdFK Proposition

HKT twists to HKT via a circle if and only if Fθ ∈S2E= TIΛ1,1I , i.e., an instanton

Xa special isometry,XyFθ =0 twists toXW a special isometry Theorem

M HKT with special isometry (α=−1). Can

untwist locally to dX[=0 on S×S1

change potential on S×Rto a6=0, (α=−2)

Fθ =dX[ isan instanton Many simply-connected examples whenb2(S)>1 E.g.,Q=kCP(2)

(56)

Torsion Superconformal T-dual Summary Twist HKT Circle

O utline

1 TorsionGeometry

Metric geometry with torsion KT Geometry

HKT Geometry

2 Superconformal Symmetry

Superconformal Quantum Mechanics The SuperalgebrasD(2, 1;α)

Geometric Structure

3 T-duality

T-duality as a Twist Construction HKT Examples

General HKT with Circle Symmetry

(57)

Torsion Superconformal T-dual Summary Twist HKT Circle

G eneral HKT with C ircle S ymmetry

M=N1×N2

N2 with an HKT circle symmetryX

[Fθ]∈H2(N1,Z),Fθ ∈S2E

Twists toN2 →W→N1HKT with circle symmetry

Generate simply-connected examples

Example N1 a K3 surface Fθ self-dual, primitive Generalises to torus actions

HKT nilmanifoldM =G/Γ g basise1, . . . ,enwith

dei+1Λ2span{e1, . . . ,ei} Barberis, DottiMiatello, andVerbitsky(2007) I,J,Kare Abelian

dei+1 ∈S2E∩Λ2span{e1, . . . ,ei} Proposition

Every HKT nilmanifold may be obtained by successive twists of a torus T4n.

(58)

Torsion Superconformal T-dual Summary Twist HKT Circle

G eneral HKT with C ircle S ymmetry

M=N1×N2

N2 with an HKT circle symmetryX

[Fθ]∈H2(N1,Z),Fθ ∈S

Referencer

RELATEREDE DOKUMENTER